Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
1. \(\dfrac{x}{7}=\dfrac{y}{4};x-y=30\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(=>\dfrac{x}{7}=10=>x=10.7=70\)
=> \(\dfrac{y}{4}=10=>y=10.4=40\)
Vậy x=70;y=40
2. Tương tự
3.\(2x=3y;x+y=10\)
Ta có: \(2x=3y=>\dfrac{y}{2}=\dfrac{x}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{2}=\dfrac{x}{3}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(=>\dfrac{y}{2}=2=>y=2.2=4\)
=> \(\dfrac{x}{3}=2=>x=2.3=6\)
Vậy y=4;x=6
4. 5. Tương tự
6. \(\dfrac{x}{5}=\dfrac{y}{2};3x-2y=44\)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{2y}{4}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
=> \(\dfrac{x}{5}=4=>x=4.5=20\)
=> \(\dfrac{y}{2}=4=>y=4.2=8\)
Vậy x=20;y=8
7. Tương tự
1, \(\dfrac{x}{7}=\dfrac{y}{4}\) và \(x-y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(\Rightarrow\dfrac{x}{7}=10\Rightarrow x=70\)
\(\Rightarrow\dfrac{y}{4}=10\Rightarrow y=40\)
2, \(\dfrac{x}{4}=\dfrac{y}{-7}\) và \(x-y=30\)
Làm tương tự câu 1.
3, \(2x=3y\) và \(x+y=10\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{2}=10\Rightarrow y=20\)
4, \(4x=3y\) và \(x-y=11\)
\(4x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{11}{-1}=-11\)
\(\Rightarrow\dfrac{x}{3}=-11\Rightarrow x=-33\)
\(\Rightarrow\dfrac{y}{4}=-11\Rightarrow y=-44\)
5, \(3x=5y\) và \(x+y=40\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\dfrac{x}{5}=5\Rightarrow x=25\)
\(\Rightarrow\dfrac{y}{3}=5\Rightarrow y=15\)
- Mệt @@ lần sau đăng từng câu một thôi bn nhé!
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...