Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x^2+2y^2}{20}=\dfrac{x^2-2y^2}{7}=\dfrac{3x^2}{27}=\dfrac{x^2}{9}\)
\(\dfrac{x^2-2y^2}{7}=\dfrac{x^2}{9}\Leftrightarrow9x^2-18y^2=7x^2\Leftrightarrow x^2=9y^2\)
ta có \(x^4.y^4=81\Leftrightarrow\left(9y^2\right)^2.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
mà \(x^2=9y^2\Leftrightarrow y^2=\dfrac{1}{9}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
Ta có \(\frac{x+5}{2}=\frac{y-2}{3}\)và \(x-y=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y-2}{2-3}=\frac{x-y+5-2}{2-3}=\frac{-10+5-2}{2-3}=\frac{-7}{-1}=7\)
=> \(\frac{x+5}{2}=7\)=> x + 5 = 14 => x = 9
và \(\frac{y-2}{3}=7\)=> y - 2 = 21 => y = 23
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\)
\(\Rightarrow\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\Rightarrow y^2=4x^2\)
Lại có \(x^{10}.y^{10}=1024\Leftrightarrow x^{10}.\left(y^2\right)^5=1024\)
\(\Leftrightarrow x^{10}.\left(4x^2\right)^5=1024\Leftrightarrow4^5.x^{10}.x^{10}=1024\)
\(\Leftrightarrow1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow x=\pm1\)
\(\Rightarrow y^2=4x^2=4\Rightarrow y=\pm2\)
Vậy \(\left\{{}\begin{matrix}x=\pm1\\y=\pm2\end{matrix}\right.\)
Đặt k = . Ta có x = 2k, y = 5k
Từ xy=10. suy ra 2k.5k = 10 => 10 = 10 => = 1 => k = ± 1
Với k = 1 ta được = 1 suy ra x = 2, y = 5
Với k = -1 ta được = -1 suy ra x = -2, y = -5
Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)
Theo đề bài,ta còn có:
\(xy=10\)
hay 2k.5k=10
10k2 =10
\(\Rightarrow k=\pm1\)
Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)
Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2.4}=\dfrac{y}{3.4}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{4.3}=\dfrac{z}{3.5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
Do đó \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}và\) \(x+y-z=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Với\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{12}=2\Rightarrow y=24\)
\(\dfrac{z}{15}=2\Rightarrow z=30\)
Vậy x=16, y=24 và z=30
Ta có :
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)
\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)
\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)
\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)
\(\Leftrightarrow2y^2=8x^2\)
\(\Leftrightarrow y^2=4x^2\)
\(\Leftrightarrow y^{10}=1024.x^{10}\)
Lại có : \(x^{10}.y^{10}=1024\)
\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)
\(\Leftrightarrow x^{20}.1024=1024\)
\(\Leftrightarrow x^{20}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)
Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)
Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình