K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)

\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)

\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)

\(\Rightarrow48x-46=0\)

\(\Rightarrow x=\frac{23}{24}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=\frac{-1}{8}\)

5 tháng 10 2021

c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)

\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)

\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)

\(\Rightarrow24y+25=49\)

\(\Rightarrow24y=24\)

\(\Rightarrow y=1\)

d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)

\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)

\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)

\(\Rightarrow3y^2+12y+13=28\)

\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)

\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)

\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

9 tháng 9 2020

           Bài làm :

 \(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

 \(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 \(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

\(d ) x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

22 tháng 7 2017

1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)

\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)

\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)

\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

4. \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

5. \(a^3x-ab+b-x\)

\(=a^3x-x-ab+b\)

\(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)

6. \(x^3-64=x^3-4^3\)

\(=\left(x-4\right)\left(x^2+4x+16\right)\)

7. \(0,125\left(a+1\right)^3-1\)

\(=\left[0,5\left(a+1\right)\right]^3-1^3\)

\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)

\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)

\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)

8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)

\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)

\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)

\(=\left(2x+22\right)\left(4x+8\right)\)

9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

11. \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

24 tháng 6 2015

hình như lớp 8 mà mình bấm bị lộn ai bik chỉ mình vs

 

11 tháng 8 2016

a)  3x( 2x + 3) -(2x+5)(3x-2)=8

<=> 6x^2+9x-6x^2+4x-15x+10=8

<=> -2x+10=8

<=> -2x= 8-10 = -2

<=> x=1

b)  (3x-4)(2x+1)-(6x+5)(x-3)=3

<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3

<=> -8x+11=3

<=> -8x= -8

<=> x=1

c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6

<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6

<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6

<=> 12x^2+ 26x-10-12x^2-18x+12=6

<=> 8x+2=6

<=> 8x=4

<=> x= 1/2

d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27

<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27

<=> 3x2y+3xy2-(x+y)3+y3=27

<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27

<=> -x3=27

<=> x= \(-\sqrt[3]{27}\)= -3

12 tháng 6 2017

a/ \(x^2+y^2=x^2+y^2+2xy-2xy =\left(x+y\right)^2-2xy\)

b/ mình không chắc nữa

bài 3

a/ \(9x^2-49=0 \Leftrightarrow x^2=\frac{49}{9} \Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)

b/ \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x+1\right)\left(x-1\right)-27=0 \Leftrightarrow x^3+27-x\left(x^2-1\right)-27=0\)

\(\Leftrightarrow x^3-x^3+x=0\Leftrightarrow x=0\)

c/\(\left(x-1\right)\left(x+2\right)-x-2=0 \Leftrightarrow \left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

d/ \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\)

\(\Leftrightarrow4x+25=0 \Leftrightarrow x=\frac{-25}{4}\)

e/ mình lười qá ko viết đề đâu 

\(\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\)

\(\Leftrightarrow-3x+1=7 \Leftrightarrow x=-2\)

có gì sai bn sửa lại nha