Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có vì |3x-4|>0
|3y+5|>0
Vậy suy ra
|3x-4|=0 và |3y+5|=0
3x-4=0 suy ra x=4/3
3y+5=0 suy ra y=5/3
cái sau cũng làm giống vậy
a)Ta có:
\(\left(x-3,5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
\(\Rightarrow x-3,5=y-\dfrac{1}{10}=0\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}=0,1\end{matrix}\right.\)
b) Ta có:
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=\dfrac{-6}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)
b: ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{7}\\5x=\dfrac{-13}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)
Bài làm:
Ta có: \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0\\\left(y-\frac{1}{10}\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
=> \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\ge0\left(\forall x,y\right)\) , mà theo đề bài:
\(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\le0\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{10}\end{cases}}\)
Ta có :
\(\left(x-3,5\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{10}\right)^4\ge0\forall y\)
(5x + 1)2 = 36/49
=> (5x + 1)2 = (6/7)2
=> \(\orbr{\begin{cases}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{cases}}\)
Làm từ phần b nha
b) \(\left(x-\frac{1}{9}\right)^3=\frac{2}{3}^6\)
\(\Rightarrow\left(x-\frac{2}{9}\right)^3=\left(\frac{1}{3}\right)^6\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1^6}{3^6}\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{3^6}\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{729}\)
\(\Rightarrow x-\frac{2}{9}=\frac{1}{9}\)
\(x=\frac{1}{9}+\frac{2}{9}\)
\(x=\frac{3}{9}=\frac{1}{3}\)
c) Sai đề rồi, xem lại đi
d) \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4< 0\)
\(\Rightarrow\frac{10000y^4-4000y^3+600y^3-40y+10000x^2+122501-70000x}{10000}< 0\)
=> Sai \(\forall y\inℝ\)
\(\left(x-3,5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
Vì: \(\left(x-3,5\right)^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3,5\right)^2=0\\\left(y-\dfrac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-3,5=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}\end{matrix}\right.\)
Cảm ơn bn