K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(\dfrac{x}{y}=\dfrac{9}{11}\Rightarrow\dfrac{x}{9}=\dfrac{y}{11}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{9}=\dfrac{y}{11}=\dfrac{x+y}{20}=\dfrac{60}{20}=3\\ \Rightarrow\left\{{}\begin{matrix}x=27\\y=33\end{matrix}\right.\)

3 tháng 10 2021

27 và 33 bạn nhé

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

9 tháng 4 2017

theo bài ra ta có:

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{x+16+y-25+z+9}{9+16+25}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{x+16}{9}=\dfrac{x+y+z}{50}\left(1\right)\)ta lại có:

\(\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\\ \Rightarrow\dfrac{7+2-x}{7}+\dfrac{9+2-x}{9}=2\\ \Rightarrow\left(1+\dfrac{2-x}{7}\right)+\left(1+\dfrac{2-x}{9}\right)=2\\ \Rightarrow\left(1+1\right)+\left(\dfrac{2-x}{7}+\dfrac{2-x}{9}\right)=2\\ \Rightarrow2+\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=2\\ \Rightarrow\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=0\\ \Rightarrow2-x=0\\ \Rightarrow x=2\)

thay x = 2 vào 1 ta có:

\(\Rightarrow\dfrac{2+16}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{18}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow2=\dfrac{x+y+z}{50}\\ \Rightarrow x+y+z=2.50\\ \Rightarrow x+y+z=100\)

vậy x + y + z = 100

7 tháng 8 2017

\(\frac{x}{12}=\frac{y}{15}̀\)và y + x = 2,7

\(\Rightarrow\frac{x}{12}=\frac{y}{15}=\frac{x+y}{12+15}=\frac{2,7}{27}=10\)

\(\Rightarrow\frac{x}{12}=10\Rightarrow x=120\)

\(\frac{y}{15}=10\Rightarrow x=150\)

Vậy \(\frac{x}{12}=\frac{120}{12}\)\(;\frac{y}{15}=\frac{150}{15}\)

15 tháng 11 2017

\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)

\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}\)

\(=\frac{2x+2-\left(2y-4\right)+2z+14}{6-10+9}=\frac{\left(2x+2z-2y\right)+20}{5}\)(Dãy tỉ số bằng nhau)

Ta có: \(x+z=y\Leftrightarrow2\left(x+z\right)=2y\)

\(\Leftrightarrow2x+2z=2y\Leftrightarrow2x+2z-2y=0\)

\(\Rightarrow\frac{\left(2x+2x-2y\right)+20}{5}=\frac{20}{5}=4\)

\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}=4\)

\(\Leftrightarrow\hept{\begin{cases}2x+2=24\\2y-4=40\\2z+14=36\end{cases}\Leftrightarrow\hept{\begin{cases}2x=22\\2y=44\\2z=22\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=11\\y=22\\z=11\end{cases}}\)

Vậy \(x=z=11;y=22.\)

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

3 tháng 10 2018
b,đặt k=x/5=y/3 x=5k;y=3k X^2-y^2=1600 Thay vào (5k)^2-(3k)^2=1600 => 25*k^2-9*k^2=1600 =>k^2*(25-9)=1600 =>k^2*16=1600 =>k^2=100 k=10 hoặc k=-10 Với k=10=>x=50,y=30 Với k=-10=>x=-50,y=-30
26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you