Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
<br class="Apple-interchange-newline"><div></div>2x3y =−13
=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3
Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có
-2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4
=> x= -7/8, y=7/4
Ta có x/5 = y/3
=> x^2/25 =y^2/ 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4
=> x = 5/2, y = 3/2 (x,y>0)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
\(\frac{x}{3}=\frac{y}{5}\)
=> \(\frac{x^4}{3^4}=\frac{y^4}{5^4}=\frac{x^2.y^2}{3^2.5^2}=\frac{225}{225}=1\)
=> x4 = 34 => x = 3 hoặc x = -3
y4 = 54 => x = 5 hoặc x = -5
KL: (x; y) = (3; 5) ; (-3; -5)
Đặt:
\(\frac{x}{3}=\frac{y}{5}=k\)
Ta có:
\(\frac{x}{3}=k\Rightarrow x=k.3\)
\(\frac{y}{5}=k\Rightarrow y=k.5\)
Thế vào \(x^2y^2=225\), ta có:
\(\left(k.3\right)^2.\left(k.5\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)=15\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=1\)hoặc \(-1\)
x ; y tự tìm bạn.
=> x = -3
y = -5
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
\(\frac{IxI}{IyI}=\frac{3}{2}=>\frac{IxI}{3}=\frac{IyI}{2}=>\frac{IxI^2}{3^2}=\frac{IyI^2}{2^2}=>\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=\frac{5}{5}=1\)
=>x2=9=>x=-3,3
y2=4=>y=-2,2
Vậy (x,y)=(2,3),(2,-3),(-2,3),(-2,-3)
Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k;y=3k\)
Ta có:
\(25k^2+9k^2=4\)
\(\Rightarrow29k^2=4\)
\(\Rightarrow k=\pm\sqrt{\frac{4}{29}}\)
P/S:Có lẽ sai đề hoặc mik lm sai chỗ nào đó:V
\(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta được
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{2}{17}\Rightarrow x^2=\frac{2.5^2}{17}=\frac{50}{17}\Rightarrow x=\sqrt{\frac{50}{17}}\)
\(\Rightarrow\frac{y^2}{3^2}=\frac{2}{17}\Rightarrow y^2=\frac{2.3^2}{17}=\frac{18}{17}\Rightarrow y=\sqrt{\frac{18}{17}}\)
_Tử yên_