Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
Với x^2<=1
=>(x^2-1)<=0,(x^2-4)<=0
(x^2-7)<=0,(x^2-10<=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
+)với x^2>=10
=>(x^2-1)>=0,x^2-4>=0
x^2-7>=0,x^2-10>=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
Vậy 1<x^2<10
vì x nguyên nên chỉ có 4 trường hợp:
x=2,x=3,x=-2,x=-3
Thử vào thì ra x=3 hoặc x=-3.
Lời giải
"hàng tồn kho_ gặp chuyên gia đồ cổ _ không biết @ khai quật lên vậy" lớp 7 khó kinh
\(A=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)\)
Với: x =0=>A=\(\left(-1\right)\left(-4\right)\left(-7\right)\left(-10\right)=280>0\) Loại
với x=+-11,+-2 => A =0 loại
với \(\left|x\right|\ge4\) các thừa số của A đều >0 => A>
còn duy nhất x=+-3 thử vào thấy A<0 => nhận
Tập nghiệm S={-3,3}
Bạn có lập bảng xét dấu với bài này nghiệm nguyên => không cần lập bảng
a,vìx^2+1>0
suy ra x-2<0
suy ra x<2
b,(x-xy )+5y-10=0
suy ra x(1-y)+-5(1-y)=5
suy ra (x-5)(1-y)=5
uocs của 5
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10