Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-7\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
b) \(x^2-2x=24\)
\(x^2-2x-24=0\)
\(\left(x-6\right)\left(x+4\right)=0\)
\(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(5x^2+10x+10-5x^2+245=0\)
\(10x+255=0\)
\(x=-25.5\)
A) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=4\Rightarrow\left(x-3\right)^2=\left(-2\right)^2;2^2\)
th1\(\left(x-3\right)^2=2^2\)
\(\Rightarrow x-3=2\)
\(\Rightarrow x=2+3\)
\(\Rightarrow x=5\)
th2: \(\left(x-3\right)^2=\left(-2\right)^2\)
\(\Rightarrow x-3=-2\)
\(\Rightarrow x=-2+3\)
\(\Rightarrow x=1\)
\(\Leftrightarrow x\in\left\{1;5\right\}\)
a)|7x-5|=|2x-3|
=>7x-5=2x-3 hoặc 7x-5=3-2x
=>5x=2 hoặc 9x=8
=>x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
Vậy x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
b)|4x-5|=x-7
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x-7\ge0\Rightarrow x\ge7\)
=>4x-5=x-7 hoặc 4x-5=-(x-7)
=>3x=-2 hoặc 5x=12
=>x=\(-\frac{2}{3}\)(loại do \(x\ge7\)) hoặc x=\(\frac{12}{5}\)(loại do \(x\ge7\))
Vậy pt vô nghiệm
c)Ta thấy: \(\hept{\begin{cases}\left(x+8\right)^4\ge0\\\left|y-7\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x+8\right)^4+\left|y-7\right|\ge0\)
Dấu = khi \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left|y-7\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+8=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
(1)
(x+1)(x-7)+17>0
<=>x^2-6x+9+1>0
<=>(x-3)^2+1>0(dpcm)
..
(7)
-y^2+4y-4-|x+1|≤0
<=>-(y-2)^2-|x+1|≤0
sum 2 so khong duong ko the la so (+)=>dpcm