Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bn ơi ! 1515 là 1/5 -123-123 là -12/3 (hỗn số -1), 179179 = 17/9 và 125125 = 1 và 2/5 nhé !
1) Làm ý 2 nhé
=> x = 3 hoặc x = -3
2) Ý 2: => x = 17/9 hoặc -17 / 9 Mà x<0 => x = 17 / 9
ý 3 :
a) \(x=\pm2,1\)
b) \(x=-\dfrac{3}{4}\)
c) \(\)Không tồn tại x
d)\(x=0,35\)
a, \(\left|x\right|=2,1\)
=> \(x=\pm2,1\)
b, \(\left|x\right|=\dfrac{3}{4},x< 0\)
=> \(x=\dfrac{3}{4}\)
c, \(\left|x\right|=-1\dfrac{2}{5}\)
=> Không tồn tại x.
d, \(\left|x\right|=0,35,x>0\)
=> \(x=0,35\)
Bài 2:
a: |x|=2,1
=>x=2,1 hoặc x=-2,1
b: |x|=17/9
nên x=17/9 hoặc x=-17/9
mà x<0
nên x=-17/9
c: Ta có: \(\left|x\right|=1\dfrac{2}{5}\)
=>|x|=7/5
=>x=7/5 hoặc x=-7/5
d: |x|=0,35
=>x=0,35 hoặc x=-0,35
mà x>0
nên x=0,35
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
1, a/ \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy .............
b/ \(\left|x\right|=3,12\Leftrightarrow\left[{}\begin{matrix}x=3,12\\x=-3,12\end{matrix}\right.\)
Vậy ...........
c/ \(\left|x\right|=0\Leftrightarrow x=0\)
Vậy ..........
d/ \(\left|x\right|=2\dfrac{1}{7}\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\dfrac{1}{7}\\x=-2\dfrac{1}{7}\end{matrix}\right.\)
Vậy ..............
2, a/ \(\left|x\right|=2,1\Leftrightarrow\left[{}\begin{matrix}x=2,1\\x=-2,1\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x\right|=\dfrac{17}{9}\) ; \(x< 0\)
\(\Leftrightarrow x=-\dfrac{17}{9}\)
Vậy ..........
c/ \(\left|x\right|=1\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}x=1\dfrac{2}{5}\\x=-1\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...........
d/ \(\left|x\right|=0,35\) ; \(x>0\Leftrightarrow x=0,35\)
3, a/ \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...........
a) \(\left|x\right|=1\frac{2}{5}\)
\(\left|x\right|=\frac{7}{5}\)
\(\Rightarrow x=\frac{7}{5}\) \(\Rightarrow x=\frac{-7}{5}\)
KL: x = 7/5 hoặc x = -7/5
b) \(\left|x\right|=2,1\)
=> x = 2,1 => x = - 2,1
KL: x = 2,1 hoặc x = -2,1
c) \(\left|x\right|=\frac{3}{4}\)
mà x < 0
=> x = -3/4
KL: x = -3/4
d) \(\left|x\right|=0,35\)
mà x>0
=> x = 0,35
KL: x = 0,35
\(a.\left|x\right|=1\frac{2}{5}=\frac{7}{5}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{7}{5}\\x=\frac{7}{5}\end{cases}}\)
\(b.\left|x\right|=2,1\Rightarrow\hept{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)
\(c.\left|x\right|=\frac{3}{4}\Rightarrow\hept{\begin{cases}-\frac{3}{4}\left(ktm\right)\\\frac{3}{4}\end{cases}}\)
\(d.\left|x\right|=0,35\Leftrightarrow\hept{\begin{cases}x=0,35\\x=-0,35\left(ktm\right)\end{cases}}\)