Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
a) Ta có \(x+4=(x+1)+3\)
nên \((x+4)\) \(⋮\left(x+1\right)\) khi \(3⋮\left(x+1\right)\) , tức là \(x+1\) là ước của 3
Vì Ư(3) = { \(-1;1;-3;3\) }
Ta có bảng
\(x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(-2\) | \(0\) | \(-4\) | \(2\) |
b) Ta có : \(4x+3=4(x-2)+11\)
nên \(\left(4x+3\right)⋮\left(x-2\right)\) khi \(11⋮\left(x-2\right)\) , tức là \((x-2) \) là ước của 11
( Làm tương tự thôi phần a) )
\(\Rightarrow x\in\left\{-9;1;3;13\right\}\)
bạn ấn vào đúng 0 sẽ ra đáp án, mình giải bài này rồi
(x2-19)(x2-30)<0
Vì x2-19 >x2-30 nên:
x2-19 >0 và x2-30 <0
=>19<x2<30
Để x nguyên dương thì x2 là số chính phương
=>x2=25
=>x=5(nhận) hoặc x=-5 (loại)
Vậy x=5
<=> x2 -19 > 0 và x2 - 30 < 0
<=> x2 > 19 và x2 < 30
<=> x > 4 và x < 6
<=> x = 5
1)
(=)x2 = 82 + 62 = 64+36=100=102 = (-10)2
=> x=10 hoặc x=-10
2)
(=)|x-1| = -26/-24=13/12
=> x-1 = 13/12 hoặc x-1=-13/12
=> x= 25/12 hoặc x= -1/12
3)
(2x-4+7)\(⋮\left(x-2\right)\)
(=) 2(x-2) + 7 \(⋮\left(x-2\right)\)
(=) 7 \(⋮\left(x-2\right)\)
(=) x-2 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
(=) x\(\in\left\{-5;1;3;9\right\}\)
vì x bé nhất => x=-5
#Học-tốt