Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a với câu b giống nhau nha bạn
ĐKXĐ: \(\hept{\begin{cases}2x-3\ge0\\x-1>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x>1\end{cases}\Rightarrow}x\ge\frac{3}{2}}\)
Ta có: \(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\Rightarrow2x-3=4\left(x-1\right)\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\left(l\right)\)
Vậy \(x\in\phi\)
c/ \(\sqrt{3}x^2-\sqrt{48}=0\Rightarrow x^2=\frac{\sqrt{48}}{\sqrt{3}}=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
d/ \(\sqrt{x-2}=2x-5\) Điều kiện nghiệm: \(x\ge\frac{5}{2}\)
\(\Rightarrow x-2=4x^2-20x+25\)
\(\Rightarrow4x^2-21x+27=0\)
\(\Rightarrow\left(x-3\right)\left(4x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{9}{4}\left(l\right)\end{cases}}\)
Vậy x = 3
a) \(pt\Leftrightarrow\frac{2x-3}{x-1}=4\)
Bài giải chỉ cần như vậy vì khi \(\frac{2x-3}{x-1}=4\)thì hiển nhiên \(\frac{2x-3}{x-1}\ge0\)nên ko cần điều kiện xác định
(Giải ĐKXĐ còn khó hơn giải bài như trên)
b) \(pt\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x-1>0\\\frac{2x-3}{x-1}=4\end{cases}}\)
c) \(pt\Leftrightarrow x^2=\sqrt{\frac{48}{3}}=4\Leftrightarrow x=\pm2\)
d)\(pt\Leftrightarrow\hept{\begin{cases}2x-5\ge0\\x-2=\left(2x-5\right)^2\end{cases}}\)
Khi \(x-2=\left(2x-5\right)^2\) thì hiển nhiên \(x-2\ge0\) nên ko cần đặt điều kiện \(x-2\ge0\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
x=\(\sqrt{\frac{2-\sqrt{3}}{2}}\) =\(\sqrt{\frac{4-2\sqrt{3}}{4}}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow2x=\sqrt{3}-1\Rightarrow2x+1=\sqrt{3}\Rightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x+1=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)
nên đề bài = \(\left(x^3\left(2x^2+2x-1\right)+1\right)^{2013}+\frac{\left(x\left(2x^2+2x-1\right)-3\right)^{2013}}{x^2\left(2x^2+2x-1\right)-3^{2013}}\)
=\(\left(0+1\right)^{2013}+\frac{\left(0-3\right)^{2013}}{0-3^{2013}}=1+1=2\)
1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)
\(\Rightarrow DK:\left(x+1\right)^2\ge4\)
4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)
\(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)
K biết đúng k.. Sai thôi
1) tc : x2 + 2x +3 = x2 + 2x + 1 + 2 = (x+1)2 +2 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
2) tương tự câu 1: x2 - 2x + 2 = (x-1)2 +1 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
3) \(\sqrt{x^2+2x-3}\)có nghĩa <=> x2+2x-3\(\ge0\)
<=> (x+1)2 - 4 \(\ge0\)
<=> (x+1)2 \(\ge4\)
<=> x+1 \(\ge2\)
<=> x \(\ge1\)
4) \(\sqrt{2x^2+5x+3}\)có nghĩa <=> 2x2 +5x +3 \(\ge0\)
<=> 2x2 + 2x + 3x + 3 \(\ge0\)
<=> (2x+3)(x+1) \(\ge0\)
<=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\) hoặc \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)
<=> \(\frac{-3}{2}\le x\le-1\)
a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)
\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))
\(\Rightarrow x\le1\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)
b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)
Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:
\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)
\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)
\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)
a) ĐK: \(x\geq \frac{1}{2}\)
Ta có: \(\sqrt{2x-1}-\sqrt{x+1}=2x-4\)
\(\Leftrightarrow \frac{(2x-1)-(x+1)}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)
\(\Leftrightarrow \frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)
\(\Leftrightarrow (x-2)\left(\frac{1}{\sqrt{2x-1}+\sqrt{x+1}}-2\right)=0\)
\(\Rightarrow \left[\begin{matrix} x-2=0\leftrightarrow x=2\\ \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}=2(*)\end{matrix}\right.\)
Đối với $(*)$:
Vì \(x\geq \frac{1}{2}\Rightarrow \sqrt{2x-1}+\sqrt{x+1}\geq \sqrt{\frac{1}{2}+1}>1\)
\(\Rightarrow \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}< 1\)
Do đó $(*)$ vô nghiệm
Vậy pt có nghiệm duy nhất $x=2$
b) ĐK:.....
\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\)
TH1:
\(\sqrt{2x^2-3x+10}=\sqrt{2x^2-5x+4}\)
\(\Rightarrow 2x^2-3x+10=2x^2-5x+4\)
\(\Rightarrow 2x+6=0\Rightarrow x=-3\) (thử lại thấy không thỏa mãn)
TH2: \(\sqrt{2x^2-3x+10}\neq \sqrt{2x^2-5x+4}\), tức là \(x\neq -3\)
PT ban đầu tương đương với:
\(\frac{(2x^2-3x+10)-(2x^2-5x+4)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)
\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)
\(\Leftrightarrow \frac{2}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=1\) (do \(x\neq -3\) )
\(\Rightarrow \sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}=2\)
\(\Rightarrow \sqrt{2x^2-3x+10}=2+\sqrt{2x^2-5x+4}\)
Bình phương 2 vế:
\(2x^2-3x+10=4+2x^2-5x+4+4\sqrt{2x^2-5x+4}\)
\(\Leftrightarrow x+1=2\sqrt{2x^2-5x+4}\)
\(\Rightarrow (x+1)^2=4(2x^2-5x+4)\)
\(\Rightarrow 7x^2-22x+15=0\Rightarrow \left[\begin{matrix} x=\frac{15}{7}\\ x=1\end{matrix}\right.\) (thử đều thấy t/m)
Vậy...........
Lời giải:
$x^2+2x=3-2\sqrt{3}$
$x^2+2x+1=4-2\sqrt{3}$
$(x+1)^2=4-2\sqrt{3}=(\sqrt{3}-1)^2$
$(x+1)^2-(\sqrt{3}-1)^2=0$
$(x+1-\sqrt{3}+1)(x+1+\sqrt{3}-1)=0$
$(x+2-\sqrt{3})(x+\sqrt{3})=0$
$\Rightarrow x+2-\sqrt{3}=0$ hoặc $x+\sqrt{3}=0$
$\Rightarrow x=\sqrt{3}-2$ hoặc $x=-\sqrt{3}$