Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)
\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)
\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)
\(=\dfrac{124}{15}\)
b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)
\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)
\(=-\dfrac{71}{375}\)
c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)
\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)
=1+2/5
=7/5
d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)
e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
a. \(\dfrac{3}{4}-\left(2x-\dfrac{2}{3}\right)=\dfrac{-5}{6}\)
\(\Rightarrow2x-\dfrac{2}{3}=\dfrac{3}{4}-\dfrac{-5}{6}\)
\(\Rightarrow2x-\dfrac{2}{3}=\dfrac{19}{12}\)
\(\Rightarrow2x=\dfrac{19}{12}+\dfrac{2}{3}=\dfrac{9}{4}\)
\(\Rightarrow x=\dfrac{9}{4}:2=\dfrac{9}{8}\)
Vậy............
b. \(1,5-\left(x+\dfrac{7}{2}\right)=2^7:2^5\)
\(\Rightarrow1,5-\left(x+\dfrac{7}{2}\right)=2^2=4\)
\(\Rightarrow x+\dfrac{7}{2}=1,5-4=\dfrac{-5}{2}\)
\(\Rightarrow x=\dfrac{-5}{2}-\dfrac{7}{2}=-6\)
Vậy.............
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
a,\(3\dfrac{17}{24}+\left(2\dfrac{8}{15}-4\dfrac{8}{15}\right):\left(2\dfrac{11}{30}-\dfrac{11}{30}\right)\)
\(=\dfrac{89}{24}-2:2\)
\(=\dfrac{65}{24}\)
b,\(0,5:\sqrt{625}-\sqrt{\dfrac{4}{25}}+0,18.\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right)\)
\(=0,5:25-\dfrac{2}{5}+0,18.\dfrac{1}{2}\)
\(=-\dfrac{29}{100}\)
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt{\dfrac{19}{16}}-\sqrt{\left(-0,75\right)^2}\\ \Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt{19}}{4}-\dfrac{3}{4}\\ \Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt{19}-3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt{19}}{4}\)
\(TH_1:x\le\dfrac{2}{3}\\ 2-3x=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{3+\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{3+\sqrt{19}}{12}\left(tm\right)\)
\(TH_2:x>\dfrac{2}{3}\\ 3x-2=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{13-\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{13-\sqrt{19}}{12}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{3+\sqrt{19}}{12};\dfrac{13-\sqrt{19}}{12}\right\}\)
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt[]{\dfrac{19}{16}}-\sqrt[]{\left(-0,75\right)^2}\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-0,75\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt[]{19}}{4}+\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt[]{19}}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2-3x=\dfrac{5-\sqrt[]{19}}{4}\\2-3x=\dfrac{-5+\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=2-\dfrac{5-\sqrt[]{19}}{4}\\3x=2-\dfrac{\sqrt[]{19}-5}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{3+\sqrt[]{19}}{4}\\3x=\dfrac{13-\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt[]{19}}{12}\\x=\dfrac{13-\sqrt[]{19}}{12}\end{matrix}\right.\)