Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
không ai trả lời
a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)
\(< =>6x-2-5x+15-18x+36=24\)
\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)
b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)
\(< =>2x^2+4x^2-4=6x^2+2x\)
\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)
c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)
\(< =>10x-6x^2+6x^2-10x-3x+21=4\)
\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)
d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)
\(< =>5x^2+5x-4x^2-8x=1-x\)
\(< =>x^2-3x+x-1=0\)
\(< =>x^2-2x-1=0\)
\(< =>\left(x-1\right)^2=2\)
\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
Ta có : ( x - 5 )( 4 - 3x ) - ( 3x + 2 )2 + ( 2x + 1 )3 = ( 2x - 1 )( 4x2 + 2x + 1 ) = 0
\(\Rightarrow\)( x - 5 )( 4 - 3x ) - ( 3x + 2 )2 + ( 2x + 1 )3 = 8x3 - 1
\(\Leftrightarrow\)( x - 5 )( 4 - 3x ) - ( 3x + 2 )2 + ( 2x + 1 )3 - 8x3 + 1 = 0
\(\Rightarrow\)4x - 20 - 3x2 + 15x - 9x2 - 12x - 4 + 8x3 + 12x2 + 6x + 1 - 8x3 + 1 = 0
\(\Rightarrow\)( 4x + 15x - 12x + 6x ) - ( 20 + 4 - 1 - 1 ) - ( 3x2 + 9x2 - 12x2 ) + ( 8x3 - 8x3 ) = 0
\(\Rightarrow\)13x - 22 = 0
\(\Rightarrow\)13x = 22
\(\Rightarrow\) x = 22 / 13
Vậy : x = 22 / 13
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
\(\Leftrightarrow4x-3x^2+20-15x-9x^2-12x-4+\left(3x+2\right)^3=8x^3-1\)
\(\Leftrightarrow-12x^2-23x+16+27x^3+54x^2+36x+8=8x^3-1\)
\(\Leftrightarrow27x^3+42x^2+13x+24-8x^3+1=0\)
\(\Leftrightarrow19x^3+42x^2+12x+25=0\)