K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

(x-3)(x-2)<x(x-1)

=>  x^2-2x-3x+6<x^2-x

=>  -4x<-6

=>  x>1,5

21 tháng 4 2021

\(\left(x-3\right)\left(x-2\right)< x\left(x-1\right)\)

<=> \(\left(x-3\right)\left(x-2\right)-x\left(x-1\right)< 0\)

<=> \(-4x+6< 0\)

<=> \(6< 4x\)

<=> \(x>\dfrac{3}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{x>\dfrac{3}{2}\right\}\)

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)

a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)

=>4x-4>=x+3

=>3x>=7

=>x>=7/3

b: (x+3)^2<(x-2)^2

=>6x+9<4x-4

=>2x<-13

=>x<-13/2

c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)

=>2/3x-1-x<=2/5x-3/5

=>-11/15x<2/5

=>x>-6/11

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

6 tháng 5 2021

 >_ là lớn hơn hoặc bằng nha do bị lỗi chính tả
  _< là bé hơn hoặc bằng

A,
     2-5x  >_  3(2-x)
⇔ 2-5x  >_  6-3x
⇔ -5x+3x  >_  6-2
⇔ -2x  >_  3
⇔ x   _<  \(\dfrac{-3}{2}\)
Tập nghiệm { x / x  _<  \(\dfrac{-3}{2}\)}

B,
     -4x + 3  _<  5x - 7
⇔  -4x - 5x  _<  -7 - 3
⇔  -9x  _<  -10
⇔  x  >_  \(\dfrac{10}{9}\)
Tập nghiệm { x / x >_  \(\dfrac{10}{9}\) }

17 tháng 8 2017

Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

⇔ 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

⇔ x ≥ 2.

Vậy x ≥ 2.

2 tháng 8 2018

Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

⇔ x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

⇔ -3x < -8

⇔ Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

23 tháng 4 2016

Bài 1:

a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)  

TH1: \(\frac{3x-2}{4}\)  = \(\frac{3x+3}{6}\) 

=> (3x-2)6 = (3x+3)4

     18x -12= 12x+12

=> x = 4

TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\) 

=> (3x-2)6 > (3x+3)4

     18x-12> 12x+12

=> x \(\ge\) 5

b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2

c) Phần c bạn cũng xét tương tự như phần a 

TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)

TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)

23 tháng 4 2016

Đã xem -_-