Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |9x - 7| = 5x - 3
⇔ 9x − 7 = 5x − 3
−9x + 7 = = 5x − 3
⇔ 9x − 5x = −3 + 7
−9x − 5x = −3 − 7
⇔ 4x = 4 −14x = −10
⇔ x = 1
x = 5/7
a TH1 : 9 - 7x \(\ge\)0 <=> x\(\le\)\(\frac{9}{7}\)
=> | 9 - 7x | = 9 - 7x (*)
thay (*) vào biểu thức ta có :
9 - 7x = 5x - 3
<=> -7x - 5x = -3 -9
<=> - 12x = -12
<=> x = 1
TH2 : 9 - 7x < 0 <=> x > \(\frac{9}{7}\) (**)
| 9 - 7x | = - ( 9 - 7x ) = 7x - 9 (**)
thay (**) vào biểu thức ta có :
7x - 9 = 5x - 3
<=> 7x - 5x = - 3 + 9
<=> 3x = 6
<=> x = 2
b) TH1: 4x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{4}\)
=> | 4x + 1 | = 4x + 1 (*)
thay (*) vào biểu thức ta có :
8x - ( 4x + 1 ) = x + 2
<=> 8x - 4x - 1 = x + 2 ( cái chỗ - ( 4x + 1 phải đổi dấu nha bạn, là -1 x ( 4x + 1 ) nên phải đổi dấu nha )
<=> 4x - x = 2 +1
<=> 3x = 3
<=> x = 1
TH2 : 4x + 1 < 0 <=> x < \(\frac{-1}{4}\)
=> | 4x + 1 | = - ( 4x + 1 ) = - 4x - 1 (**)( cái này cũng phải đổi dấu nè bạn )
thay (**) vào biểu thức ta có :
8x -( - 4x - 1 ) = x + 2
<=> 8x + 4x + 1 = x + 2
<=> 12x - x = 2 -1
<=> 11x = 1
<=> x = \(\frac{1}{11}\)( loại vì \(\frac{1}{11}\)> \(\frac{-1}{4}\))
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
a) Ta có: \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
\(\Leftrightarrow x^2-10x+18-x^2=12\)
\(\Leftrightarrow-10x+18=12\)
\(\Leftrightarrow-10x=-6\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
b) Ta có: \(7x\left(x-2\right)-5\left(x-1\right)=7x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5-7x^2-3=0\)
\(\Leftrightarrow-19x+2=0\)
\(\Leftrightarrow-19x=-2\)
hay \(x=\frac{2}{19}\)
Vậy: \(x=\frac{2}{19}\)
a) (5x+1)2 - (5x+3)(5x-3)=30
=> 25x2 +50x +1 - (25x2-9)=30
=> 25x2 + 50x +1 - 25x2 + 9 = 30
=> 50x = 30 - 9 -1
=> 50x = 20
=> x= 2/5
#)Giải :
a) \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Rightarrow25x^2+10x+1-25x^2+9=30\)
\(\Rightarrow\left(25x^2-25x^2\right)+10x+1+9=30\)
\(\Rightarrow10x+10=30\)
\(\Rightarrow x=2\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Rightarrow x^3-27-x\left(x^2-4\right)=15\)
\(\Rightarrow x^3-27x-x^3+4x=15\)
\(\Rightarrow4x-27=15\)
\(\Rightarrow4x=42\)
\(\Rightarrow x=\frac{21}{2}\)
\(\left|9-7x\right|=5x-3\)
th1 : \(9-7x\ge0\Leftrightarrow7x\le9\Leftrightarrow x\le\dfrac{9}{7}\)
thì \(\left|9-7x\right|=5x-3\Leftrightarrow9-7x=5x-3\)
\(\Leftrightarrow5x-3-9+7x=0\Leftrightarrow12x-12=0\)
\(\Leftrightarrow12x=12\Leftrightarrow x=1\) (tmđk)
th2 : \(9-7x< 0\Leftrightarrow7x>9\Leftrightarrow x>\dfrac{9}{7}\)
thì \(\left|9-7x\right|=5x-3\Leftrightarrow7x-9=5x-3\)
\(\Leftrightarrow7x-9-5x+3=0\Leftrightarrow2x-6=0\)
\(\Leftrightarrow2x=6\Leftrightarrow x=3\) (tmđk)
vậy \(x=1;x=3\)
\(\left|9-7x\right|=5x-3\)
+) TH1: \(9-7x\ge0\Rightarrow x\le\dfrac{9}{7}\)
Khi đó: \(9-7x=5x-3\)
\(\Rightarrow-7x-5x=-9-3\)
\(\Rightarrow-12x=-12\)
\(\Rightarrow x=1\) (thỏa mãn)
+) TH2: \(9-7x< 0\Rightarrow x>\dfrac{9}{7}\)
Khi đó: \(-9+7x=5x-3\)
\(\Rightarrow7x-5x=9-3\)
\(\Rightarrow2x=7\)
\(\Rightarrow x=\dfrac{7}{2}\) (TM)
Vậy \(x\in\left\{1;\dfrac{7}{2}\right\}.\)