K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

Đúng thì TICK nka !

2x(x-5)-x(3+2x)= 26

2x^2-10x-3x-2x^2=26

-13x=26 x=-2

Vậy x=-2.

b) giống

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

12 tháng 9 2017

bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.

VD: 

\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)

\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)

\(=-20\)

Bài 1:

a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)

\(=4x^2-8x-16-5+20x-4x^2-12x-9\)

\(=-30\)

b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)

\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)

\(=-175\)

d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)

\(=-11x^2-32x+3-48+32x+11x^2-44\)

=-89

a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)

Do đó: A=C+D

\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)

\(=4x^2-8x-16-4x^2-12x-9-5+20x\)

\(=-30\)

\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)

\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)

\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)

=-175

A=C+D=-30-175=-205

b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)

\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

Do đó: B=E+F

\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)

\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)

\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)

\(=-18x^3+8x^2+7x-4\)

\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)

\(=-95\)

\(B=-18x^3+8x^2+7x-99\)