Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow x^2-25-x^2-8x-16+\left(4x+1\right)^3=64x^3+8+48x^2-12x\)
\(\Leftrightarrow-8x-41+64x^3+48x^2+12x+1=64x^3+48x^2-12x+8\)
=>4x-40=-12x+8
=>16x=48
hay x=3
2: \(\Leftrightarrow12x^2-48x-x^3+1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\)
\(\Leftrightarrow-63=-12x-28\)
=>12x+28=63
=>12x=35
hay x=35/12
\(1.\left(x-5\right)\left(x+5\right)-\left(x+4\right)^2+\left(4x+1\right)^3=\left(4x+2\right)\left(16x^2-8x+4\right)+12x\left(4x-1\right)\)⇔ \(x^2-25-x^2-8x-16+64x^3+48x^2+12x+1=64x^3+8+48x^2-12x\)⇔ \(16x-48=0\)
⇔ \(x=3\)
KL..........
\(-6x^2\left(x+5\right)^2-\left(x-3\right)^2+\left(x^2-2\right)\left(2x^2+1\right)-4x^2\left(3x-4\right)^2\)
\(=-6x^2\left(x^2+10x+25\right)-\left(x^2-6x+9\right)+\left(2x^4-3x^2-2\right)-4x^2\left(9x^2-24x+16\right)\)
\(=-6x^4-60x^3-150x^2-x^2+6x-9+2x^4-3x^2-2-36x^4+96x^3-64x^2\)
\(=-40x^4+36x^3-218x^2+6x-11\)
(đã thử lại)
\(\left(x-1\right)^3-\left(3x-5\right)\left(3x+5\right)=\left(x-3\right)\left(x^2+3x+9\right)-3x\left(x-1\right)-9x^2+x\)
\(\Leftrightarrow x^3-3x^2+3x-1-9x^2+25=x^3-27-3x^2+3x-9x^2+x\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(-3x^2-9x^2+9x^2+3x^2\right)+\left(3x-3x-x\right)-1+25+27=0\)
\(\Leftrightarrow-x+51=0\)
\(\Leftrightarrow x=51\)
Vậy ,....
\(a,x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1=x^2+2x+1\)
\(\Leftrightarrow x^2+2x+1-x-1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)
\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x^2+1=0\)
Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)
\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm
Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)
x4 + x3 + 2x2 + 1
= (x4 + 2x2 + 1) + x3
= (x2 + 1)2 + x3
còn bài nào ko??
56457675675758768364576567568768963454256364576756
\(x^4+x^3+2x^2+1\)
\(=\left(x^4+2x^2+1\right)+x^3\)
\(=\left(x^2+1\right)^2+x^3\)
\(\left(x+1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow3x^2+3x-26=3x^2+44x-25\)
\(\Leftrightarrow-41x=1\)
\(\Leftrightarrow x=-\dfrac{1}{41}\)
\(12x\left(x-4\right)-\left(x+1\right)\left(x^2-x+1\right)+\left(x-4\right)^3=\left(x-3\right)\left(x+1\right)-\left(x+5\right)^2\) ⇔ \(12x^2-48x-x^3-1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\) ⇔ \(12x-37=0\)
⇔ \(x=\dfrac{37}{12}\)
Vậy ,....