K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

a)Với x1 = x= 1

 \( \implies\) \(f\left(1\right)=f\left(1.1\right)\)

 \( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)

 \( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)

 \( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)

Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )

\( \implies\) \(f\left(1\right)\) khác \(0\)

\( \implies\) \(f\left(1\right)-1=0\)

\( \implies\) \(f\left(1\right)=1\)

b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

 \( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)

15 tháng 5 2017

1.

h(x)=x(x-1)+1=x2-x+1

Cho h(x)=0=>x2-x+1=0<=>\(\left(x^2-\dfrac{1}{2}x\right)-\left(\dfrac{1}{2}x-\dfrac{1}{4}\right)+\dfrac{3}{4}=0\)

<=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>PTVN

2.

(x-1).f(x)=(x+4).f(x+8)

*)Với x=1 ta có:

0.f(1)=5.f(9)

<=>5.f(9)=0

=>x=9 là 1 nghiệm của f(x)

*)với x=-4 ta có:

-5.f(-4)=0.f(4)

=>-5.f(-4)=0

=>x=-4 là 1 nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là x=-4 và x=9

23 tháng 11 2016

Có: \(x_2^2=x_1.x_3\Leftrightarrow\frac{x_2}{x_3}=\frac{x_1}{x_2}\left(1\right)\)

\(x_3^2=x_2.x_4\Rightarrow\frac{x_3}{x_4}=\frac{x_2}{x_3}\left(2\right)\)

\(x_4^2=x_3.x_5\Rightarrow\frac{x_4}{x_5}=\frac{x_3}{x_4}\left(3\right)\)

\(x_5^2=x_4.x_6\Rightarrow\frac{x_5}{x_6}=\frac{x_4}{x_5}\left(4\right)\)

Từ (1); (2); (3) và (4) \(\Rightarrow\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}=\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\)

\(\Rightarrow\frac{x_1^5}{x_2^5}=\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.\frac{x_4}{x_5}.\frac{x_5}{x_6}=\left(\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\right)^5=\frac{x_1}{x_6}\left(đpcm\right)\)

23 tháng 11 2016

cảm ơn bạn nhé!

 

1 tháng 4 2019

lớp 7 mà đề khó v

1 tháng 4 2019

Khó lắm , lớp 7 khó thế

DD
1 tháng 3 2021

a) Chỉ là thay số nên bạn tự làm nhé. 

b) \(y_1=1\)\(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\)\(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.

Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\)\(k\)chẵn thì \(y_k=0\)(1).

Khi đó ta có: 

\(A=y_1+y_2+...+y_{2021}\)

\(A=1+0+1+...+1\)

\(A=\frac{2021-1}{2}+1=1011\)

7 tháng 7 2015

Viết đề còn sai =.=

g(x) = cx2 + bx + a

\(f\left(x_0\right)=ax^2_0+bx_0+c=0\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x^2_0}+\frac{b}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\)

24 tháng 4 2017

dap an bang o dung ko