Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Min A=12\(\Leftrightarrow\)\(\left(x-1\right)^2=0\Leftrightarrow x=1\)
A = (x-1)2 + 12
Ta có : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\)
Dấu = xảy ra <=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy MinA = 12 khi x = 1
b) B = | x + 3 | + 2020
Ta có \(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy MinB = 2020 khi x = -3
c) C = 5/x-2
MinC <=> 5/x-2 đạt GTNN <=> x-2 đạt GT âm lớn nhất
=> x - 2 = -1
=> x = 1
Vậy MinC = -5 khi x = 1
d) D = x+5/x-4 = \(\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Để D đạt GTNN => 9/x-4 đạt GTNN => x - 4 đạt GT âm lớn nhất
=> x - 4 = -1
=> x = 3
Vậy MinD = -8 khi x = 3
Bài 1
a) có (x-1)^2 lon hơn hoặc bằng 0
=> ( x-1)^2 + 2008 lớn hơn hoac bang 2008
=> A lớn hơn hoac bang 2008
vay giai tri nho nhát la .2008
b) có | x+4| lon hon hoặc bang 0
=>| x+4| + 1996 lon hon hoặc bang 1996
=> B lon hon hoặc bang 1996
vay B nho nhất la 1996
bai 2
a)-( x+1)^2008 nho hơn hoặc bang 0
=> 2010- (x+ 1)^2008 nho hơn hoặc bang 2010
=> P nho hon hoặc bang 2008
vay gia tri lon nhất của P là 2008
những phần kia tương tự như vậy, nhớ like nhé
a.\(A=\left(x-1\right)^2+2008\)
Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)
Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\)
Vậy Amin = 2008 \(\Leftrightarrow\) x = 1
b. \(B=\left|x+4\right|+1996\)
Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)
Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=0-4\)
\(\Leftrightarrow x=-4\)
Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)
tìm x nguyên để các biểu thức sau đạt g trị lớn nhất
a,P=4-(x-2)mũ 32 b,Q=20-|3-x| c,C=5/(x-3)mũ 2 +1
\(a)\) Ta có :
\(\left(x-2\right)^{32}\ge0\) ( với mọi x )
\(\Rightarrow\)\(4-\left(x-2\right)^{32}\ge4\)
Dấu "=" xảy ra khi \(x-2=0\)
\(\Rightarrow\)\(x=2\)
Vậy \(P_{min}=4\) khi \(x=2\)
\(b)\) Ta có :
\(\left|3-x\right|\ge0\) \(\left(\forall x\inℤ\right)\)
\(\Rightarrow\)\(20-\left|3-x\right|\ge20\)
Dấu "=" xảy ra khi \(3-x=0\)
\(\Rightarrow\)\(x=3\)
Vậy \(Q_{min}=20\) khi \(x=3\)
Chúc bạn học tốt ~