Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P nguyên => 2x^2 + 3x+3 chia hết cho 2x-1
2x^2+3x+3 = x(2x-1)+4x+3. Vì x(2x-1)chia hết cho 2x-1 => 4x+3 chia hết cho 2x-1
=> 2(2x-1)+5. Do 2(2x-1) chia hết cho 2x-1 nên 5 chia hết cho 2x-1=> 2x-1 thuộc Ư(5)={+-1;+-5}.ta có bảng sau:
2x-1 | 1 | -1 | 5 | -5 |
x | 1 | 0 | 3 | -2 |
Vậy x thuộc{1;0;3;-2} thì P nguyên
\(P=\frac{2x^2-x+4x+3}{2x-1}=\frac{x\left(2x-1\right)+2\left(2x-1\right)+5}{2x-1}\)
\(=x+2+\frac{5}{2x-1}\).Do x nguyên nên x + 2 nguyên.
Để P nguyên thì 2x - 1 thuộc Ư(5).
Đến đây dễ rồi nhé.
Bài giải
Ta có : \(P=\frac{2x^2+3x+3}{2x-1}=\frac{x\left(2x-1\right)+x+3x+3}{2x-1}=\frac{x\left(2x-1\right)+4x+3}{2x-1}\)
\(=\frac{x\left(2x-1\right)+2\left(2x-1\right)+2+3}{2x-1}=\frac{\left(x+2\right)\left(2x-1\right)+5}{2x-1}=x+2+\frac{5}{2x-1}\)
Để \(P=\frac{2x^2+3x+3}{2x-1}\)nguyên \(\Rightarrow\text{ }\frac{5}{2x-1}\) nguyên \(\Rightarrow\text{ }5\text{ }⋮\text{ }2x-1\)
\(\Leftrightarrow\text{ }2x-1\inƯ\left(5\right)=\left\{\pm1\text{ ; }\pm5\right\}\)
Ta có bảng : ( Vi không có dấu hoặc 4 cái nên mình lập bảng )
\(2x-1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(x\) | \(0\) | \(1\) | \(-2\) | \(3\) |
Vậy \(P\) có giá trị nguyên khi \(x\in\left\{0\text{ ; }1\text{ ; }-2\text{ ; }3\right\}\)
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
1)=2x^2+(x-1)^2+1
Tổng 2 số không âm và 1 luôn dương
2)
Tồn tại A=> x khác +-1
A=(x+1)/(x-1)=1+2/(x-1)
x-1={-2,-1,1,2}
x={-1,0,2,3}
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Ta có
\(\frac{2x^2+3x+3}{2x+1}=x+1+\frac{2}{2x+1}\)
Để \(Q\in z\Rightarrow2⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
Vì 2x+1 là số lẻ nên \(2x+1=\pm1\)
\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy....
ta có:
(2x2 + 3x + 3) : (2x + 1) = x + 1 (dư 2)
=> 2x + 1 \(\in\)Ư (2) = \(\left\{\pm1;\pm2\right\}\)
=> 2x + 1 = 1 <=> x = 0
2x + 1 = -1 <=> x = -1
2x + 1 = 2 <=> x = \(\frac{1}{2}\)
2x + 1 = -2 <=> x = \(\frac{-3}{2}\)
A\(\in\)Z <=> 2x+1\(⋮\)2x
Mà 2x\(⋮\)2x=> 1\(⋮\)2x
=> 2x\(\in\){1;-1}
=> x \(\in\){\(\frac{1}{2}\);\(\frac{-1}{2}\)}
Mà x\(\in\)Z
=> Không có nghiệm x nguyên để A nguyên