K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)

\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)

\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)

\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)

\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)

\(\Rightarrow32x+32=31x+62\)

\(\Rightarrow x=30\)

Vậy x=30

Chúc bn học tốt

22 tháng 3 2021

thank

NV
9 tháng 12 2018

1/

\(y\left(x+1\right)-x^2\left(x+1\right)=7\Leftrightarrow\left(x+1\right)\left(y-x^2\right)=7\)

TH1: \(\left\{{}\begin{matrix}x+1=1\\y-x^2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=7\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+1=7\\y-x^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=37\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=-1\\y-x^2=-7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=-7\\y-x^2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=63\end{matrix}\right.\)

2/

\(\left(1+\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right)...\left(1+\dfrac{1}{\left(x+1-1\right)\left(x+1+1\right)}\right)=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{\left(x+1\right)^2}{x\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{2.3.4...\left(x+1\right)}{3.4.5...\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2\left(x+1\right)}{\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow2012\left(x+1\right)=2011\left(x+2\right)\)

\(\Leftrightarrow x=2010\)

9 tháng 9 2017

1)

\(A=\dfrac{1}{2}.\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}......\dfrac{4064256}{2015.2017}\\ =\dfrac{1.2.2.3.3.....2016.2016}{2.1.3.2.4.3.5....2015.2017}\\ =\dfrac{\left(2.3.4.....2016\right)}{\left(1.2.3.4....2015\right)}.\dfrac{\left(2.3.4....2016\right)}{\left(2.3.4.5....2017\right)}\\ =2016.\dfrac{1}{2017}=\dfrac{2016}{2017}\)

9 tháng 9 2017

2) a)

Ta có : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\ge0\) \(\forall x,y\)

\(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|=0\) ( theo đề ra)

\(\)\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{6}\right)^2=0\\\left|3y+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{12}\\y=-4\end{matrix}\right.\)

24 tháng 6 2018

\(C=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{3}{3.5}\right)...\left(1+\dfrac{2014}{2016}\right)\)

\(C=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4060225}{2014.2016}\)

\(C=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{2015.2015}{2014.2016}\)

\(C=\dfrac{2.2.3.3.4.4.....2015.2015}{1.3.2.4.3.5.....2014.2016}\)

\(C=\dfrac{2.\left(3.2\right)\left(4.3\right).....\left(2015.2014\right).2015}{1.\left(3.2\right)\left(4.3\right).....\left(2015.2014\right).2016}\)\(\)

\(C=\dfrac{2.2015}{1.2016}\)

\(C=\dfrac{4030}{2016}\)\(=1\dfrac{2014}{2016}\).

16 tháng 5 2018

1)\(2a^4+1\ge2a^3+a^2\)

\(\Leftrightarrow2a^4-2a^3-a^2+1\ge0\)

\(\Leftrightarrow\left(a^4-2a^3+a^2\right)+\left(a^4-2a^2+1\right)\ge0\)

\(\Leftrightarrow\left(a^2-a\right)^2+\left(a^2-1\right)^2\ge0\)(luôn đúng)

"="<=>a=1

16 tháng 5 2018

Ta có:\(2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)

\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\)

\(2A=1-\dfrac{1}{11}=\dfrac{10}{11}\)

\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{9\cdot11}\right)\)

\(B=\dfrac{4}{1\cdot3}\cdot\dfrac{9}{2\cdot4}\cdot...\cdot\dfrac{100}{9\cdot11}\)

\(B=\dfrac{2\cdot2\cdot3\cdot3\cdot...\cdot10\cdot10}{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}\)

\(B=\dfrac{20}{11}\)

\(\Rightarrow11< 2x< 20\)

\(\Rightarrow x\in\left\{6;7;8;9\right\}\)

19 tháng 1 2018

Dat A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{13.15}\)

2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{13.15}\)

= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-....+\dfrac{1}{13}-\dfrac{1}{15}\)

= 1-\(\dfrac{1}{15}=\dfrac{14}{15}\)

=> A=\(\dfrac{7}{15}\)

Ta co : \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

=> \(\dfrac{7}{15}x-\dfrac{7}{15}+\dfrac{7}{15}=\dfrac{3}{5}x\)

=> \(\dfrac{7}{15}x-\dfrac{3}{5}x=0\)

=> x\(\left(\dfrac{7}{15}-\dfrac{3}{5}\right)=0\)

=> x\(\left(-\dfrac{2}{15}\right)=0\)

=> x=0

19 tháng 1 2018

\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=>\(\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=> \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=>\(\dfrac{7}{15}x-\dfrac{7}{15}=\dfrac{3}{5}x-\dfrac{7}{15}\)

<=>\(\dfrac{7}{15}x-\dfrac{3}{5}x=\dfrac{-7}{15}+\dfrac{7}{15}\)

<=> \(\dfrac{-2}{15}x=0\)

<=> \(x=0\)

Vậy: \(s=\left\{0\right\}.\)

23 tháng 1 2018

pt nào cho thì mới biết chứ bạn