K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

Làm như vậy không ổn lắm bởi vì còn phải xét trường hợp \(x=0\)và \(x< 0\)nữa, rất mất thời gian. Bạn cứ làm theo cách thông thường đưa về phương trình tích là được rồi.

26 tháng 2 2019

m<9 ạ em nhầm!

27 tháng 2 2019

Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)

Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?

Riêng mình thì bài này mình dùng delta phẩy cho lẹ:

                                       Lời giải

Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:

\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)

\(\Leftrightarrow m< 9\)

17 tháng 10 2016

1/ Điều kiện xác định

\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)

Bình phương 2 vế ta được

\(x^2=2IxI-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)

Vậy nghiệm pt là x = -1

2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)

\(\ge2\sqrt{5\times180}+5=65\)

Đạt được khi x = 7

3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)

Có vô số giá trị thực x thỏa mãn cái đó

4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)

\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)

Tới đây thì đơn giản rồi b tự làm nốt nhé

17 tháng 10 2016

1 / 

đây thuộc phương trình , phần mình rất yếu 

IxI không phải là giá trị tuyệt đối của x đâu

2 /

giá trị nhỏ nhất của x = 2

nếu vậy , A = 10 + 180 = 190

nhưng đây là kết quả quá lớn , ta phải tiếp tục cho x lớn hơn nữa để có kết quả nhỏ hơn

3 /  ; 4 /

chịu 

29 tháng 11 2019

\(A=\frac{y}{x}.\sqrt{\frac{x^2}{\left(y^2\right)^2}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}< 0.\)

Đơn giản hơn vì:

\(\sqrt{\frac{x^2}{y^4}}>0\)\(\frac{y}{x}< 0\)=> \(A< 0.\)

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

1
29 tháng 6 2016

bai ban giai dung roi do

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

5 tháng 6 2018

Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)

5 tháng 9 2017

\(x^2y+xy-2x^2-3x+4=0\)

\(x^2\left(y-2\right)+x\left(y-2\right)-x+4=0\)

\(x\left(y-2\right)\left(x+1\right)-\left(x+1\right)+5=0\)

\(\left(x+1\right)\left[x\left(y-2\right)-1\right]+5=0\)

8 tháng 6 2019

A=5x-???

B=2x-???

12 tháng 6 2019

1/  Vì tử âm nên mẫu cũng âm => \(4x^2-4x+1< 0\) => \(\left(2x-1\right)^2\)<0

Biểu thức trên không thể xảy ra nên pt vô no

2/ theo đề bài ta suy ra: \(x+\frac{x}{x}=x+1\)