Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)M=5+5^2+5^3+.....+5^100
=>5M=52+53+54+....+5101
=>5M-M=52+53+54+....+5101-5-52-53-...-5100=>4M=5101-5
=>M\(=\frac{5^{101}-5}{4}\)
=>Q=20M+25=\(20.\frac{5^{101}-5}{4}+25=5.\left(5^{101}-5\right)+25=5^{102}-25+25\)
=5102=(551)2 là số chính phương
Vậy Q là số chính phương
b)5^x+1.5^x+2.5^x+3=20M+25
sai đề
đề khó hiểu quá bạn : còn Q= 20 M + 25 là sao vậy
=> đề khó hiểu
Tìm x thuộc N để x^2+5 là số chính phương
Đặt x^2+5=k^2(mttq giả sử k nguyên)
=>x^2-k^2=5
=>(x-k)(x+k)=5.
x+k>x-k>0 và 5=1.5
=>x-k=1,x+k=5=>x=3(thỏa)
ĐỂ n^2 +n +2 là số chính phương
=> n^2 +n+2 =a^2 (với a thuộc n)
=> 4n^2 +4n +8 =4a^2
=> (2n+1)^2 +7 =4a^2
=> 4a^2 -(2n+1)^2 =7
=> (2a -2n -1)(2a +2n+1) =7 (1)
do 7>0 , 2a +2n +1>0(do a,n là số tự nhiên) => 2a-2n-1 >0
(1) => 2a-2n-1 ,2a+2n+1 thuộc ước dương của 7 mà 2a +2n +1 >2a-2n-1
=>
{2a+2n+1=7 (2)
{2a-2n-1=1(3)
=> 4n+2 =6 =. 4n +2=6 => n=4 [cái này là lấy (2)-(3) ]
vậy n=1 là số cần tìm
~~~~~~~~~~~~~~
bn nên sửa lại đề bài thế này :
Tìm các số tự nhiên n để n^2+n+2 là 1 số chính phương.?
tk mk nha $_$
Giả sử \(^{2^x+1=a^2}\), ta có:
<=> \(2^x=a^2-1\)
<=>\(2^x=a^2-a+a-1\)
<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)
<=>\(2^x=\left(a-1\right)\left(a+1\right)\)
=>
- \(a-1=2^y\)<=>\(a=2^y+1\)
- \(a+1=2^z\)<=>\(a=2^z-1\)
(x=y+z)
=> \(2^y+1=2^z-1\)
<=>\(2^z-2^y=2\)
<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)
<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)
Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:
- \(2^{y-1}=1\)<=> y-1 = 0 <=> y=1
- \(2^{z-1}=2\)<=> z-1 = 1 <=> z=2
=> x = y+z = 1+2 = 3.