K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

1,\(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{22}{3}\)

\(=2\left(x-\dfrac{1}{3}\right)^2-\dfrac{22}{3}\ge-\dfrac{22}{3}\forall x\)

Vậy GTNN của biểu thức là \(-\dfrac{22}{3}\) khi \(x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)

\(b,f\left(x\right)=5x^2+7x=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}\right)-\dfrac{49}{20}\)\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Vậy Giá trị nhỏ nhất của biểu thức là \(-\dfrac{49}{20}\) khi \(x+\dfrac{7}{10}=0\Rightarrow x=-\dfrac{7}{10}\)

\(c,f\left(x\right)=-5x^2+9x-2=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}\right)+\dfrac{41}{20}\)\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{41}{20}\) khi \(x-\dfrac{9}{10}=0\Rightarrow x=\dfrac{9}{10}\)

\(d,f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{9}{28}\) khi \(x-\dfrac{3}{14}=0\Rightarrow x=\dfrac{3}{14}\)

25 tháng 7 2017

1/ \(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x-7\right)\)

\(=3\left(x^2-\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{64}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\)

Ta có: \(3\left(x-\dfrac{1}{3}\right)^2\ge0\forall x\Rightarrow3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\ge-\dfrac{64}{3}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{1}{3}=0\) hay \(x=\dfrac{1}{3}\)

Vậy MINf(x) = \(-\dfrac{64}{3}\) khi x = \(\dfrac{1}{3}\).

2/ \(f\left(x\right)=5x^2+7x\)

\(=5\left(x^2+\dfrac{7}{5}x\right)=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}-\dfrac{49}{100}\right)\)

\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\)

Ta có: \(5\left(x+\dfrac{7}{10}\right)^2\ge0\forall x\Rightarrow5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Dấu "=" xảy ra khi \(x+\dfrac{7}{10}=0\) hay \(x=-\dfrac{7}{10}\)

Vậy MINf(x) = \(-\dfrac{49}{20}\) khi x = \(-\dfrac{7}{10}\).

1/ \(f\left(x\right)=-5x^2+9x-2\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{2}{5}\right)\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}-\dfrac{41}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\)

Ta có: \(-5\left(x-\dfrac{9}{10}\right)^2\le0\forall x\Rightarrow-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{9}{10}=0\) hay \(x=\dfrac{9}{10}\)

Vậy MAXf(x) = \(\dfrac{41}{20}\) khi x = \(\dfrac{9}{10}\)

2/ \(f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)

\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\)

Ta có: \(-7\left(x-\dfrac{3}{14}\right)^2\le0\forall x\Rightarrow-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{3}{14}=0\) hay x = \(\dfrac{3}{14}\)

Vậy MAXf(x) = \(\dfrac{9}{28}\) khi x = \(\dfrac{3}{14}\).

11 tháng 7 2017

a)\(f\left(x\right)=-4x^2+12x+3\)

\(=-4x^2+12x-9+12\)

\(=-\left(4x^2-12x+9\right)+12\)

\(=-\left(2x-3\right)^2+12\le12\)

Xảy ra khi \(x=\dfrac{3}{2}\)

b)\(f\left(x\right)=-x^2+5x-2\)

\(=-x^2+5x-\dfrac{25}{4}+\dfrac{17}{4}\)

\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{17}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)

Xảy ra khi \(x=\dfrac{5}{2}\)

c)\(f\left(x\right)=-3x^2+7x\)

\(=-3x^2+7x^2-\dfrac{49}{12}+\dfrac{49}{12}\)

\(=-3\left(x^2-\dfrac{7x}{3}+\dfrac{49}{36}\right)+\dfrac{49}{12}\)

\(=-3\left(x-\dfrac{7}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

Xảy ra khi \(x=\dfrac{7}{6}\)

11 tháng 7 2017

1. Ta có: \(f\left(x\right)=9x^2-12x+1=\left(3x\right)^2-2.3x.2+2^2-3\)

\(=\left(3x-2\right)^2-3\)

\(\left(3x-2\right)^2\ge0\) với mọi x \(\Rightarrow\left(3x-2\right)^2-3\ge-3\) hay \(f\left(x\right)\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\Rightarrow3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)

Vậy min f(x) =-3 khi \(x=\dfrac{2}{3}\)

2. Ta có: \(f\left(x\right)=2x^2-7x+5=2.\left(x^2-3,5x\right)+5=2.\left(x^2-2.x.1,75+1,75^2\right)-2.1,75^2+5\)

\(=2.\left(x-1,75\right)^2-1,125\)

\(2.\left(x-1,75\right)^2\ge0\Rightarrow2.\left(x-1,75\right)^2-1,125\ge-1,125\Rightarrow f\left(x\right)\ge-1,125\)

Dấu ''='' xảy ra \(\Leftrightarrow2.\left(x-1,75\right)^2=0\Rightarrow x-1,75=0\Rightarrow x=1,75\)

Vậy min f(x)=-1,125 khi x=1,75

3.\(3x^2-10x=3.\left(x^2-\dfrac{10}{3}x\right)=3.\left(x^2-2.x.\dfrac{5}{3}\right)\)

\(=3.\left[x^2-2.x.\dfrac{5}{3}+\left(\dfrac{5}{3}\right)^2\right]-3.\left(\dfrac{5}{3}\right)^2\)

\(=3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\)

\(3.\left(x-\dfrac{5}{3}\right)^2\ge0\Rightarrow3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\ge-\dfrac{25}{3}\Rightarrow f\left(x\right)\ge-\dfrac{25}{3}\)

Dấu ''='' xảy ra \(\Leftrightarrow3.\left(x-\dfrac{5}{3}\right)^2=0\Rightarrow x-\dfrac{5}{3}=0\Rightarrow x=\dfrac{5}{3}\)

Vậy min f(x)=\(-\dfrac{25}{3}\) khi \(x=\dfrac{5}{3}\)

30 tháng 8 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+2x-x-1\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)

\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)

\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)

\(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)

\(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\)

\(\left(2x-y\right)^2\ge0\) với mọi x và y

\(y^2\ge0\) với mọi y

\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)

\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(C=5x-3x^2+2\)

\(C=-\left(3x^2-5x-2\right)\)

\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)

\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)

\(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

\(D=-8x^2+4xy-y^2+3\)

\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(D=-\left(2x-y\right)^2-4x^2+3\)

\(-\left(2x-y\right)^2\le0\) với mọi x và y

\(-4x^2\le0\) với mọi x

\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y

\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(E=x^2-8x+38\)

\(E=x^2-2.x.4+16+22\)

\(E=\left(x-4\right)^2+22\)

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x

\(\Rightarrow Emin=22\Leftrightarrow x=4\)

\(F=6x-x^2+1\)

\(F=-\left(x^2-6x-1\right)\)

\(F=-\left(x^2-2.x.3+9-9-1\right)\)

\(F=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-3\right)^2+10\le10\)

\(\Rightarrow Fmax=10\Leftrightarrow x=3\)

24 tháng 6 2018

\(a,5x^2-3x\left(x-2\right)\)

\(=5x^2-3x^2+6x\)

\(=2x^2+6x\)
\(b,3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c, Đề ko rõ Yang Yang

\(d,7x\left(x-5\right)+3\left(x-2\right)\)

\(=7x^2-35x+3x-6\)

\(=7x^2-32x-6\)

\(e,5-4x\left(x-2\right)+4x^2\)

\(=5-4x^2+8x+4x^2\)

\(=5+8x\)

\(f,4x\left(2x-3\right)-5x\left(x-2\right)\)

\(=8x^2-12x-5x^2+10x\)

\(=3x^2-2x\)

7 tháng 7 2016

đề sai ko thể nào là GTNN

7 tháng 7 2016

Lớn nhất