Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
a.\(A=\left(x-1\right)^2+2008\)
Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)
Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\)
Vậy Amin = 2008 \(\Leftrightarrow\) x = 1
b. \(B=\left|x+4\right|+1996\)
Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)
Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=0-4\)
\(\Leftrightarrow x=-4\)
Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)
Bài 1
a) có (x-1)^2 lon hơn hoặc bằng 0
=> ( x-1)^2 + 2008 lớn hơn hoac bang 2008
=> A lớn hơn hoac bang 2008
vay giai tri nho nhát la .2008
b) có | x+4| lon hon hoặc bang 0
=>| x+4| + 1996 lon hon hoặc bang 1996
=> B lon hon hoặc bang 1996
vay B nho nhất la 1996
bai 2
a)-( x+1)^2008 nho hơn hoặc bang 0
=> 2010- (x+ 1)^2008 nho hơn hoặc bang 2010
=> P nho hon hoặc bang 2008
vay gia tri lon nhất của P là 2008
những phần kia tương tự như vậy, nhớ like nhé
a) Ta có: \(x^2\ge0\Rightarrow\)Để 14-x2 lớn nhất thì x2 nhỏ nhất => x2=0 \(\Leftrightarrow\)x=0
b) Ta có : \(\left(x-2\right)^2\ge0\Rightarrow\)Để 25 - (x-2)2 lớn nhất thì (x-2)2 nhỏ nhất \(\Leftrightarrow\)(x-2)2=0\(\Leftrightarrow\)x-2=0\(\Leftrightarrow\)x=2
Chúc bạn học tốt ^^!!!
\(a,\)ta có \(x^2\ge0\Leftrightarrow-x^2\le0\Leftrightarrow14-x^2\le14\)
\(\Rightarrow A_{max}=14\)đạt được khi\(x^2=0\Leftrightarrow x=0\)
\(b,\)ta có\(\left(x-2\right)^2\ge0\Leftrightarrow-\left(x-2\right)^2\le0\Leftrightarrow25-\left(x-2\right)^2\le25\)
\(\Rightarrow B_{max}=25\)đạt được khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)