K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

1 tháng 6 2021

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2

28 tháng 3 2021

a) ta thấy (x-1)^2 >/=0

->(x-1)^2 +2008>/= 0

dấu = xảy ra khi và chỉ khi (x-1)^2= 0

<=> x=1

 vậy A có giá trị bằng 2008 khi và chỉ khi x=1

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4

29 tháng 1 2019

Sửa đề:

A=/x+5/+10

Ta có: /x+5/>= 0 với mọi x>=0

=> A=/x+5/+10 >= 10

=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5

Vậy...

29 tháng 1 2019

\(\text{a) }A=\left|x+5\right|+10\)

\(\text{Vì }\left|x+5\right|\ge0\forall x\)

\(\Rightarrow A=\left|x+5\right|+10\ge10\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|x+5\right|=0\)

\(\Rightarrow x=-5\)

\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)

\(\text{b) }\left|3-x\right|+5\)

\(\text{Vì }\left|3-x\right|\ge0\forall x\)

\(\Rightarrow\left|3-x\right|+5\ge5\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|3-x\right|=0\)

\(\Rightarrow x=3\)

\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)

\(\text{d) }D=\left(x+2\right)^2+15\)

\(\text{Vì ( x + 2 )}^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+15\ge15\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

3 tháng 2 2018

nhỏ nhất là ko xác định đc

lớn nhất là ko xác định đc