Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h)
ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)
k)
ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)
m)
ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)
Lời giải:
a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$
b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)
c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$
d) ĐK:
\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)
e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$
f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)
\(a,\sqrt{1-3x}\)
\(< =>1-3x\ge0\)
\(3x\le1\)
\(x\le\frac{1}{3}\)
\(b,-3< 0\)
\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)
\(x< \frac{5}{2}\)
\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)
\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)
\(d,\frac{x-5}{\sqrt{-4x}}\)
\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)
\(-4x>0\)
\(x< 0\)
\(e,\sqrt{x-2}+\frac{1}{x-3}\)
\(\sqrt{x-2}\ge0;x-3\ne0\)
\(x\ge2;x\ne3\)
\(f,\sqrt{-\left(x-2\right)^2}\)
\(\sqrt{-\left(x-2\right)^2}\ge0\)
\(-\left|x-2\right|\ge0\)
\(-\left|x-2\right|\le0\)
lên chỉ có 1 nghiệm duy nhất là
\(x-2=0< =>x=2\)
\(g,\sqrt{\frac{-2x^2}{3x+2}}\)
\(-2x^2\le0\)
\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)
\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)
a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)
\(\Leftrightarrow1-3x\ge0\)
\(\Leftrightarrow-3x\ge-1\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)
\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)
\(\Leftrightarrow2x-5>0\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\frac{5}{2}\)
c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)
\(\Leftrightarrow3x+2-2x+3\ge0\)
\(\Leftrightarrow x+5\ge0\)
\(\Leftrightarrow x\ge-5\)
d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)
\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)
\(\Leftrightarrow-2x>0\)
\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)
f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)
\(\Leftrightarrow-x^2+4x-4\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge0\)
không có z thỏa mãn
g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(\Leftrightarrow3x+2>0\)
\(\Leftrightarrow3x>-2\)
\(\Leftrightarrow x>\frac{-2}{3}\)
@Cừu
Bài 1:
a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)
b) Ta có: \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
mà \(\left(x+1\right)^2\ge0\forall x\)
nên \(x^2+2x+1\ge0\forall x\)
Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x
c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)
\(\Leftrightarrow x\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)
Bài 3:
a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)
\(=\left|3-\sqrt{10}\right|\)
\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))
b) Ta có: \(\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))
c) Ta có: \(3x-\sqrt{x^2-2x+1}\)
\(=3x-\sqrt{\left(x-1\right)^2}\)
\(=3x-\left|x-1\right|\)
\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)
B4
a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)
b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)
c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)
d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
B3
a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\sqrt{x-1}=17\)
\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)
\(x=290\left(tm\right)\)
a, Với \(x\ge0;x\ne\frac{16}{9};4\)
\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)
b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)
\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)