Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 6 nha bạn vì để có thể trừ cho 5 mà 7 lại trừ được số đó nên ta có 2 số 6 và 5 .
mà 5 - 5 = 0 nhưng trong phân số mẫu số không thể là 0 . vậy :
\(A=\frac{7-6}{6-5}\)= \(\frac{1}{1}\)
a/ Để C nguyên thì 3x+1 phải là Ư(5)
\(\Leftrightarrow3x+1\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;-\frac{2}{3};\frac{4}{3};-2\right\}\)
mà x nguyên nên x={0;-2}
b/ \(\frac{x+1}{x-1}=1+\frac{2}{x-1}\)\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
a) Để \(C\inℤ\)
\(\Rightarrow5⋮3x+1\)
\(\Rightarrow3x+1\inƯ\left(5\right)\)
\(\Rightarrow3x+1\in\left\{1;5;-1;-5\right\}\)
Lập bảng xét các trường hợp ta có :
\(3x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x\) | \(0\) | \(\frac{4}{3}\) | \(-\frac{2}{3}\) | \(-2\) |
Vậy \(x\in\left\{0;2\right\}\)
b) Để \(D\inℤ\)
\(\Rightarrow\left(x+1\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(x-1+2\right)⋮\left(x-1\right)\)
Vì \(\left(x-1\right)⋮\left(x-1\right)\)
\(\Rightarrow2⋮\left(x-1\right)\)
\(\Rightarrow\left(x-1\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(x-1\right)\in\left\{1;-1;2;-2\right\}\)
Lập bảng xét các trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Vì x2 ≥ 0 => 2x2 ≥ 0 ; |y - 2| ≥ 0 => 3|y - 2| ≥ 0
=> (2x2 + 3|y - 2|) ≥ 0
=> (2x2 + 3|y - 2|) - 2016 ≤ 2016
Dấu " = " xảy ra <=> 2x2 = 0 và 3|y - 2| = 0
<=> x2 = 0 |y - 2| = 0
<=> x = 0 y - 2 = 0
<=> x = 0 y = 2
Vậy GTLN C = 2016 khi x = 0; y = 2
b, Ta có: \(D=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Vì x2 ≥ 0 => x2 + 3 ≥ 3
=> \(\frac{12}{x^2+3}\le\frac{12}{3}=4\)
=> \(1+\frac{12}{x^2+3}\le1+4=5\)
Dấu " = " xảy ra <=> x2 = 0 <=> x = 0
Vậy GTNN của D = 5 khi x = 0
Đề ngược??