K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

29 tháng 8 2017

a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)

Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)

\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)

- Đề ghi ko hiểu ?

b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)

\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

29 tháng 8 2017

\(A=0,6+\left|\dfrac{1}{2}-x\right|\)

\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)

\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra khi:

\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Dấu "=" xảy ra khi:

\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

11 tháng 7 2017

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\left|2x+\dfrac{2}{3}\right|\ge0\Rightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

=> MaxB=2/3 => 2x+2/3=0 <=> x=-1/3

Vậy MaxB=2/3 khi x=-1/3

11 tháng 7 2017

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\text{Ta có : }\left|2x+\dfrac{2}{3}\right|\ge0\text{ }\forall\text{ }x\\ \Rightarrow B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

\(\text{Dấu "=" xảy ra khi : }\left|2x+\dfrac{2}{3}\right|=0\\ \Leftrightarrow2x+\dfrac{2}{3}=0\\ \Leftrightarrow2x=-\dfrac{2}{3}\\ \Leftrightarrow x=-\dfrac{1}{3}\)

Vậy \(x=-\dfrac{1}{3}\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)