Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
1.\(x^2-2x-4y^2-4y=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
2.\(x^4+2x^3-4x-4=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)=\left(x^2-2\right)\left(x^2+2x-2\right)\)
3.\(3x^2-3y^2-2\left(x-y\right)^2=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\left(x-y\right)=\left(x-y\right)\left(3x+3y-2x+2y\right)\)\(=\left(x-y\right)\left(x+5y\right)\)
4.\(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
5.\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
6.\(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)\(=\left(2x+1\right)\left(3-2x-5\right)=\left(2x+1\right)\left(-2-2x\right)=-2\left(2x+1\right)\left(x+1\right)\)
7.\(\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)=\left(x-5\right)\left(x-5+x+5+2x+1\right)\)\(=\left(x-5\right)\left(4x+1\right)\)
8.\(\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)=\left(3x-2\right)\left(3x-6\right)=3\left(3x-2\right)\left(x-2\right)\)
Áp dụng định lý Bezout:
2x3 + 3x2 + ax + b chia hết cho (x+1).(x-1)
\(\Leftrightarrow\hept{\begin{cases}2.1^3+3.1^2+a.1+b=0\\2.\left(-1\right)^3-3.\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=-5\\a-b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-5\\b=0\end{cases}}\)
Áp dụng định lý Bezout:
x3 - 4x2+ ax + b chia hết cho x2 - 3x + 2
hay x3 - 4x2+ ax + b chia hết cho (x-1)(x-2)
\(\Leftrightarrow\hept{\begin{cases}1-4+a+b=0\\8-16+2a+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=3\\2a+b=8\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\)
3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3
Vậy
- (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0
\(2x^2\left(3x-5x^3\right)+10x^5-5x^3\)
\(=\left(6x^3-10x^5\right)+10x^5-5x^3\)
\(=6x^3-10x^5+10x^5-5x^3\)
\(=\left(6x^3-5x^3\right)-\left(10^5-10^5\right)\)
\(=x^3\)
\(\left(x+2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x^2-2x+4\right)\right]+\left(x-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4+x-4\right)\)
\(=\left(x+2\right)\left[\left(x-2x\right)+\left(4-4\right)+x^2\right]\)
\(=\left(x+2\right)\left(-1+x\right)\)
\(=-x+x^2+\left(-2\right)+2x\)
\(=x+x^2+\left(-2\right)\)
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^3+2^3\right)-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12-2=0\)
\(3x-42=0\)
\(3x=42\)
\(x=14\)