K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

\(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(x^3-6x^2+12x-8-x^3+6x^2=4\)

\(12x-8=4\)

\(12x=4+8\)

\(12x=12\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

\(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)

\(x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0\)

\(7x^2=0\)

\(\Rightarrow x=0\)

Vậy \(x=0\)

Tham khảo nhé~

14 tháng 7 2018

\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8=7\)

\(\Leftrightarrow x=\frac{-7}{2}\)

Vậy \(x=\frac{-7}{2}\)

a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

=>4x-27=1

hay x=7

b: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x+1\right)^2+3x^2=15\)

\(\Leftrightarrow-9x^2+27x+6x^2+12x+6+3x^2=15\)

=>39x+6=15

hay x=3/13

c: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

hay x=14

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

b) Ta có: \(\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)-x^6+2x=1\)

\(\Leftrightarrow\left(x^3-8\right)\left(x^3+8\right)-x^6+2x-1=0\)

\(\Leftrightarrow x^6-64-x^6+2x-1=0\)

\(\Leftrightarrow2x-65=0\)

\(\Leftrightarrow2x=65\)

hay \(x=\frac{65}{2}\)

Vậy: \(x=\frac{65}{2}\)

c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27-x\left(x+2\right)\left(x-2\right)-1=0\)

\(\Leftrightarrow x^3-27-x\left(x^2-4\right)-1=0\)

\(\Leftrightarrow x^3-27-x^3+4x-1=0\)

\(\Leftrightarrow4x-28=0\)

\(\Leftrightarrow4x=28\)

hay x=7

Vậy: x=7