Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a nhân loạn lên, c 813=(34)3=312:3x....
d)NHớm x-7x+1 vào
Có: (2x-4)x+1=(2x-4)x+5
<=> (2x-4)x+1 - (2x-4)x+5=0
<=> (2x-4)x+1\([1-\left(2x-4\right)^4]=0\)
<=> \(\left[{}\begin{matrix}\left(2x-4\right)^{x+1}=0\\1-\left(2x-4\right)^4=0\end{matrix}\right.< =>\left[{}\begin{matrix}2x-4=0\\\left(2x-4\right)^4=1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x=4\\2x-4=1hoặc2x-4=-1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=2\\2x=5hoặc2x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2};x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy x\(\in\left\{2;\dfrac{5}{2};\dfrac{3}{2}\right\}\)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
a, \(5^2.7^3.11^1.x-5^2.7^4.11^2=0\)
\(\left(5^2.7^3.11\right)\left(x-7.11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(5^2.7^3.11\right)=0\left(l\right)\\\left(x-7.11\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}\\x-77=0\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=77\end{cases}}}\)
Vậy x = 77
b) \(\left(2x+1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}\left(2x+1\right)^2=5^2\\\left(2x+1\right)^2=\left(-5\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
(2x+1)^2=5^2
2x+1=5
2x=5-1
2x=4
x=4÷2
x=2
câu1khó mik làm câu2
a)11/12 - (2/5 + x)= 2/3
2/5+x=11/12-2/3
2/5+x=1/4
x=1/4-2/5
x=-3/20
b) 2.x (x- 1/7)= 0
2x^2-2/7=0
2x^2=2/7
x^2=1/7
x=\(\sqrt{\frac{1}{7}}\) ;_\(\sqrt{\frac{1}{7}}\)
c)3/4+1/4:x=2/5
1/4:x=2/5-3/4=-7/20
x=1/4:-7/20=-5/7
d, (x- 1/2)2 =0
x-1/2=0
x=1/2
e, (2x -1)3= -8=(-2)^3
2x-1=-2
2x=-2+1=-1
x=-1/2
ta lập bảng xét dấu, sau khi lập xong , ta xét từng trường hợp là được ( câu a)