Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 1/5 )2 = 0
<=> x - 1/5 = 0
<=> x = 1/5
b) ( x - 2 )2 = 1
<=> ( x - 2 )2 = ( ±1 )2
<=> x - 2 = 1 hoặc x - 2 = -1
<=> x = 3 hoặc x = 1
c) ( 2x - 1 )3 = -8
<=> ( 2x - 1 )3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = -1/2
d) ( x4 )2 = x12/x5
<=> x8 = x7
<=> x8 - x7 = 0
<=> x7( x - 1 ) = 0
<=> x7 = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
e) x10 = 25x8
<=> x10 - 25x8 = 0
<=> x8( x2 - 25 ) = 0
<=> x8 = 0 hoặc x2 - 25 = 0
<=> x = 0 hoặc x = ±5
f) ( 2x + 3 )2 = 9/121
<=> ( 2x + 3 )2 = ( ±3/11 )2
<=> 2x + 3 = 3/11 hoặc 2x + 3 = -3/11
<=> x = -15/11 hoặc x = -18/11
a) \(\left(x-\frac{1}{5}\right)^2=0\Leftrightarrow x-\frac{1}{5}=0\Leftrightarrow x=\frac{1}{5}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
c) \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3+8=0\)
\(\Leftrightarrow\left(2x-1+8\right)\left[\left(2x-1\right)^2-8\left(2x-1\right)+64\right]=0\)
\(\Leftrightarrow2x+7=0\)
\(\Leftrightarrow x=\frac{-7}{2}\)
d) ĐKXĐ : \(x\ne0\)
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8=x^7\)
\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=1\left(tm\right)\end{cases}\Leftrightarrow x=1}\)
e) ĐKXĐ : x khác 0
\(x^{10}=25x^8\)
\(\Leftrightarrow x^2=25\Leftrightarrow x=5\)
f) \(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Leftrightarrow\left(2x+3+\frac{3}{11}\right)\left(2x+3-\frac{3}{11}\right)=0\)
\(\Leftrightarrow\left(2x+\frac{36}{11}\right)\left(2x+\frac{30}{11}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-18}{11}\\x=-\frac{15}{11}\end{cases}}\)
a: (x-3)2=49
=>x-3=7 hoặc x-3=-7
=>x=10 hoặc x=-4
b: \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
=>x=0 hoặc x=1
c: \(\Leftrightarrow x^{10}-25x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)
hay \(x\in\left\{0;5;-5\right\}\)
a)\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8=x^7\)\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b)\(x^{10}=25\cdot x^8\)
\(\Leftrightarrow x^{10}-25\cdot x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^8=0\\x^2-5^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-5\right)\left(x+5\right)=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
a) \(\left(2x+3\right)^2=\frac{9}{144}\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+3=\frac{1}{4}\\2x+3=\frac{-1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{-11}{4}\\2x=\frac{-13}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-11}{8}\\x=\frac{-13}{8}\end{cases}}}\)
Vậy ...
b) Ta có: \(\left(3x-1\right)^3=\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
Vậy ....
c) \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25\Leftrightarrow x=\left\{5;-5\right\}\)
Vậy ...
d) \(\frac{x^7}{81}=27\Leftrightarrow x^7=27.81=2187\)
Mà 37 = 2187 => x7 = 37 => x = 3
Vậy ....
e) \(\frac{x^8}{9}=729\Leftrightarrow x^8=729.9=6561\)
Mà 38 = (-3)8 = 6561
=> x8 = 38 = (-3)8
=> x = {-3;3}
Vậy ...
a, A = x5 - 5x4 + 5x3 - 5x2 + 5x - 1
A= x5 - ( 4+1 ) x4 + ( 4+1 ) x3 - ( 4+1) x2 + ( 4+1 ) x -1
Thay 4 = x vào biểu thức A, ta đc :
A = x5 - ( x+1 ) x4 + ( x+1 ) x3 - ( x+1 ) x2 + ( x+1 ) x - 1
A = x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A = x -1
Thay x = 4 vào biểu thức A, ta đc :
A = 4 -1
A = 3
b, B = x7 - 80x6 + 80x5 - 80x4 + .....+ 80x + 15
B = x7 - ( 79 +1 ) x6 + ( 79+1 )x5 - ( 79+1 ) x4 +....+( 79+1 )x + 15
Thay 79 = z vào biểu thức A, ta có :
B = x7 - ( x + 1 )x6 + ( x+1 )x5 - ( x+1 )x4 + .....+ ( x+1 )x +15
B= x7 - x7 - x6 + x6 + x5 - x5 - x4 + .....- x2 + x2 + x + 15
B= x + 15
Thay x= 79 vào biểu thức A, ta có:
A = 79 + 15
A= 94
c, C = x14 - 10x13 + 10x12 - 10x11 + ....+ 10x2 - 10x + 10
C= x14 - ( x +1 )x13 + ( x + 1 ) x12 - ( x + 1 )x11 + ..... + ( x + 1 )x2 - ( x + 1 )x - 10
C= x14 - x14 - x13 + x13 + x12 - x12 - x11 +....+ x3 - x2 + x2 - x +10
C= -x -10
Thay -x = -9 vào biểu thức C, ta có :
C = -9 + 10
C = 1
d, D = x10 - ( x+1 )x9 + (x + 1 )x8 - ( x+1 )x7 +....+( x+1 )x2 - ( x + 1 )x + 25
D = x10 - ( x + 1 ) x9 + ( x + 1 )x8 - ( x + 1 )x7 + ..... + x3 - x2 + x2 - x + 25
D = -x + 25
thay -x = -24, vào biểu thức A , ta đc ;
A = -24 + 25
A = 1
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
a) (x4)2 =x12 : x5
=>x8=x7
=>x=0 hoặc x=1
b) x10=25x8
=>x10:x8=25
x2=25
=>|x|=5
=>x=5 hoặc x=-5
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)
vậy x=7, x=8 hay x=6
a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8:x^7=1\)
\(\Rightarrow x=1\)
Vậy x = 1
b) \(x^{10}=25.x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)