K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

a) \(\frac{-3}{5}.y=\frac{21}{10}\)

          \(y=\frac{21}{10}:\frac{-3}{5}\)

         \(y=\frac{-7}{2}\)

vậy \(y=\frac{-7}{2}\)

b) \(y:\frac{3}{8}=-1\frac{31}{33}\)

  \(y:\frac{3}{8}=\frac{-64}{33}\)

\(y=\frac{-64}{33}.\frac{3}{8}\)

\(y=\frac{-8}{11}\)

vậy \(y=\frac{-8}{11}\)

c) \(1\frac{2}{5}.y+\frac{3}{7}=\frac{-4}{5}\)

\(\frac{7}{5}.y+\frac{3}{7}=\frac{-4}{5}\)

\(\frac{7}{5}.y=\frac{-4}{5}-\frac{3}{7}\)

\(\frac{7}{5}.y=\frac{-43}{35}\)

 

15 tháng 8 2016

\(y=\frac{-43}{35}:\frac{7}{5}\)

\(y=\frac{-43}{49}\)

vậy \(y=\frac{-43}{49}\)

d) \(\frac{-11}{12}.y+0,25=\frac{5}{6}\)

\(\frac{-11}{12}.y=\frac{5}{6}-0,25\)

\(\frac{-11}{12}.y=\frac{7}{12}\)

\(y=\frac{7}{12}:\frac{-11}{12}\)

\(y=\frac{-7}{11}\)

vậy \(y=\frac{-7}{11}\)

16 tháng 7 2016

a) \(y=\frac{21}{10}:\left(-\frac{3}{5}\right)=-\frac{7}{2}\)

b) \(y=-1\frac{31}{33}.\frac{3}{8}=-\frac{8}{11}\)

c) \(1\frac{2}{5}.y=-\frac{4}{5}-\frac{3}{7}=-\frac{43}{35}\Rightarrow y=-\frac{43}{35}:1\frac{2}{5}=-\frac{43}{49}\)

d) \(-\frac{11}{12}.y=\frac{5}{6}-0,25=\frac{7}{12}\Rightarrow y=\frac{7}{12}:\left(-\frac{11}{12}\right)=-\frac{7}{11}\)

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

24 tháng 7 2018

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

24 tháng 8 2019

a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)

=> \(\frac{x}{12}=\frac{y}{3}\)\(x-y=36.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)

\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(48;12\right).\)

b)

\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)

\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)

\(\frac{5}{3}x=\frac{1}{21}\)

\(x=\frac{1}{21}:\frac{5}{3}\)

\(x=\frac{1}{35}\)

Vậy \(x=\frac{1}{35}.\)

\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)

Vậy \(x=\frac{5}{6}.\)

Có 1 câu bạn đăng mình làm ở dưới rồi mà.

Chúc bạn học tốt!

24 tháng 8 2019

a)áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)

\(\)x/12=4 suy ra x=12.4=48

y/3=4 suy ra y=3.4 =12

b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)

\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)

\(\frac{5}{3}x=\frac{1}{21}\)

\(x=\frac{1}{21}:\frac{5}{3}\)

\(x=\frac{1}{35}\)

\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)

\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)

\(\frac{2}{5}+x=\frac{1}{4}\)

\(x=\frac{1}{4}-\frac{2}{5}\)

\(x=\frac{-3}{20}\)

\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)

\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)

\(\left|x-\frac{2}{5}\right|=2\)

suy ra x-2/5=2 hoac x-2/5=-2

\(x-\frac{2}{5}=2\)

\(x=\frac{12}{5}\)

\(x-\frac{2}{5}=-2\)

\(x=\frac{-8}{5}\)

\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)

17 tháng 8 2019

hihaChúc bạn học tốt!eoeo

17 tháng 8 2019

Lời giải:

a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)

Vậy: \(x=20;y=12;z=42\)

b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)

Vây:\(x=30;y=40;z=56\)

c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54

\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)

\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)

Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)

Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)

Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)