Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+144^n.12\)
\(=11^n.133+144^n.12-11^n.12\)
\(=11^n.133+12\left(144^n-12^n\right)\)
Ta có \(a^n-b^n⋮a-b\Rightarrow144^n-12^n⋮133\)
\(\Rightarrow11^n.133+12\left(144^n-12^n\right)⋮133\)
Vậy \(A=11^{n+2}+12^{2n+1}⋮133\left(đpcm\right)\)
a) (5x +1)^2= 6^2/7^2
=> 5x+1= 6/7 hoặc -6/7 ( vì cả hai đều có mũ hai nên có thể bỏ đi - cái này mình giải thích cho bạn hỉu thui, đừng chép vào vở nhé)
Đến đây thì bạn cứ tính theo cách tìm x thông thường, cuối cùng thì ra số âm nên không có kết quả x thuộc N
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
a) \(\left(2n+1\right)⋮\left(6-n\right)\)
Ta có : \(\left(6-n\right)⋮\left(6-n\right)\)
=> \(2\left(6-n\right)⋮6-n\)
hay \(12-2n⋮6-n\)
=> \(\left(12-2n\right)-\left(2n+1\right)⋮6-n\)
\(11⋮6-n\)
=>\(6-n\in\left\{11;-11\right\}\)
=>\(n\in\left\{-5;17\right\}\)
\(\text{Đề bài sai : }\frac{4}{\left(n-4\right)^n}->\frac{4}{\left(n-4\right)^n}\)
\(\text{Ta có :}\)
\(S=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right)n}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-...-\frac{1}{n-4}+\frac{1}{n}\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3n+5}{5n}\)
\(\text{Vậy ...}\)
(5x-4)n=1
=> \(\sqrt[n]{1}=1\)
=> 5x-4 = 1
5x = 1+4
5x = 5
x = 5:5
x = 1
(8x-1)2n+1 = 52n+1
\(\sqrt[2n+1]{5^{2n+1}}=5\)
=> 8x-1 = 5
8x = 5+1
8x = 6
x = 6:8
x = 3/4