K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Đề:............

<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0

<=> (1 - 2018x).[(-1) + 2019x] = 0

Xét 2 trường hợp, ta có:

TH1: 1 - 2018x = 0          TH2: -1 + 2019x = 0

<=> 2018x = 1                 <=> 2019x = 1

<=> x = 1/2018                <=> x = 1/2019

Vậy x = 1/2018; 1/2019

9 tháng 11 2018

\(2018x-1+2019x\left(1-2018x\right)=0\)

\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)

\(\left(1-2018x\right)\left(-1+2019x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)

8 tháng 11 2018

\(2018x^2-2019x+1=0\)

\(2018x^2-2018x-x+1=0\)

\(2018x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2018x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)

8 tháng 11 2018

\(\frac{1}{2018}\)

31 tháng 10 2018

x2 - 5x = 0

=> x(x - 5) = 0

=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

31 tháng 10 2018

b)  (3x - 5)2 - 4 = 0

=> (3x - 5)2 = 0 + 4

=> (3x - 5)2 = 4

=> (3x - 5)2 = 22

=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)

=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

4 tháng 3 2020

Cô Nguyễn Linh Chi : Cho e hỏi là bài này không cần chia, mà ta chỉ cần chuyển vế,phân tích đa thức thành nhân tử rồi thay vào để tính biểu thức A có được không ạ ??

Khi đó ta có là : \(\hept{\begin{cases}x=y\\2018x=-2019y\end{cases}}\)

Rồi nhận xét loại đc TH \(2018x=-2019y\) do x,y không cùng > 0

Khi đó có : \(A=\frac{2018x+x}{2019x-2018x}=2019\)

Em thấy dễ dàng hơn cô ạ !!

4 tháng 3 2020

\(2018x^2+xy=2019y^2\)

chia cả hai vế cho y^2 ta có:

\(2018.\left(\frac{x}{y}\right)^2+\frac{x}{y}-2019=0\)

Đặt: \(t=\frac{x}{y}>0\)ta có: \(2018t^2+t-2019=0\Leftrightarrow2018t^2-2018t+2019t-2019=0\)

<=> \(2018t\left(t-1\right)+2019\left(t-1\right)=0\)

<=> \(\left(t-1\right)\left(2018t+2019\right)=0\)

<=> \(\orbr{\begin{cases}t-1=0\\2018t+2019=0\end{cases}}\)

<=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{2019}{2018}\left(loai\right)\end{cases}}\)

Ta có: \(A=\frac{2018x+y}{2019x-2018y}=\frac{2018.\frac{x}{y}+1}{2019.\frac{x}{y}-2018}=\frac{2018t+1}{2019t-2018}=\frac{2018+1}{2019-2018}=2019\)

20 tháng 2 2019

a) \(x^4+2019x^2+2018x+2019\)

\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

b) \(E=2x^2-8x+1=2x^2-8x+8-7\)

\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)

Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy MinE = -7 <=> x = 2

20 tháng 2 2019

b) \(E=2x^2-8x+1\)

\(E=2\left(x^2-4x+\frac{1}{2}\right)\)

\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)

\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)

\(E=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....

8 tháng 9 2019

Câu a):

ta có (x2-x-2)2+(x-2)2

=((x-2)2(x+1))2+(x-2)2

=(x-2)2(x2+2x+2)

24 tháng 10 2019
https://i.imgur.com/DxE4HlK.jpg
12 tháng 10 2019

đặt ẩn phụ là ra

tích cho t đi

12 tháng 10 2019

a) (2018x - 1) - 2019x (2018x - 1)=0

<=> (2018x - 1)(1 - 2019x)=0

<=> 2018x-1=0

1-2019x=0

<=> x=1/2018

x=1/2019

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

\(a=2018x+2015; b=2018x+2013; c=2019x+2019\)

\(\Rightarrow a-b=2; b-c=-x-6; c-a=x+4\)

Ta có:

\(a^2+b^2+c^2-ab-bc-ac=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}\)

\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=\frac{2^2+(-x-6)^2+(x+4)^2}{2}\)

\(=\frac{2x^2+20x+56}{2}=x^2+10x+28\)