Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-1}{3+x}< 0\Leftrightarrow2+\dfrac{-7}{x+3}< 0\)
Để biểu thức < 0 suy ra \(-\dfrac{7}{x+3}< -2\)\(\Leftrightarrow\dfrac{7}{x+3}>2\Rightarrow x< \dfrac{1}{2}\)
Vậy \(x< \dfrac{1}{2}\)
\(\dfrac{2x-1}{x+3}< 0\)
TH1: 2x-1>0 và x+3<0
=>x>1/2 và x<-3
=>Loại
TH2: 2x-1<0 và x+3>0
=>-3<x<1/2
a: \(\dfrac{2.75}{x}=\dfrac{0.4}{1.5}=\dfrac{4}{15}\)
\(\Leftrightarrow x=\dfrac{11}{4}\cdot\dfrac{15}{4}=\dfrac{165}{16}\)
b: \(3\dfrac{1}{2}:\left(2x-3\right)=\dfrac{-3}{4}:0.2\)
\(\Leftrightarrow\dfrac{7}{2}:\left(2x-3\right)=\dfrac{-3}{4}:\dfrac{1}{5}=\dfrac{-15}{4}\)
\(\Leftrightarrow2x-3=\dfrac{7}{2}:\dfrac{-15}{4}=\dfrac{-7}{2}\cdot\dfrac{4}{15}=\dfrac{-28}{30}=\dfrac{-14}{15}\)
=>2x=-14/15+3=45/45-14/15=31/45
=>x=31/90
c: \(\dfrac{3x+2}{27}=\dfrac{3}{3x+2}\)
\(\Leftrightarrow\left(3x+2\right)^2=81\)
=>3x+2=9 hoặc 3x+2=-9
=>3x=7 hoặc 3x=-11
=>x=7/3 hoặc x=-11/3
d: \(\dfrac{5-x}{4}=\dfrac{2x+3}{2}\)
=>10-2x=8x+12
=>-10x=2
hay x=-1/5
b: \(\dfrac{x-1}{5}=\dfrac{2x+1}{3}\)
=>10x+5=3x-3
=>7x=-8
hay x=-8/7
c: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22
d: \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2-1=x^2-4\)(vô lý)
e: \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Leftrightarrow\left(x+4\right)^2=100\)
=>x+4=10 hoặc x+4=-10
=>x=6 hoặc x=-14
a: \(\dfrac{31-2x}{x+23}=\dfrac{9}{4}\)
=>121-8x=9x+207
=>-17x=86
hay x=-86/17
b: \(\dfrac{\left|2x-1\right|}{\dfrac{1}{2}}=\dfrac{18}{5}\)
=>|2x-1|=9/5
=>2x-1=9/5 hoặc 2x-1=-9/5
=>2x=14/5 hoặc 2x=-4/5
=>x=7/5 hoặc x=-2/5
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15a: \(\Leftrightarrow-\dfrac{3}{2x-3}=\dfrac{2}{5}-\dfrac{3}{2}-3=\dfrac{-41}{10}\)
=>41(2x-3)=30
=>82x-123=30
=>82x=153
hay x=153/82
b: \(\Leftrightarrow\left(x-1\right)\left(7-2x\right)=0\)
=>x=1 hoặc x=7/2
c: \(\Leftrightarrow\left(\dfrac{x+1}{2018}+1\right)+\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+10}{2009}+1\right)+\left(\dfrac{x+11}{2008}+1\right)+\left(\dfrac{x+12}{2007}+1\right)\)
=>x+2019=0
hay x=-2019
\(\Leftrightarrow\dfrac{7^x.7^2+7^x.7+7^x}{57}=\dfrac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)
\(\Leftrightarrow7^x\left(\dfrac{7^2+7+1}{57}\right)=5^{2x}\left(\dfrac{1+5+5^3}{131}\right)\)
\(\Leftrightarrow7^x\dfrac{57}{57}=5^{2x}\dfrac{131}{131}\Leftrightarrow7^x=5^{2x}\Leftrightarrow7^x=25^x\Leftrightarrow x=0\)
a: =>1/3x-2/5x-2/5=0
=>-1/15x=2/5
hay x=-6
b: =>2(x+2)=0,5(2x+1)
=>2x+4=x+0,5
=>x=-3,5
a) \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x-\dfrac{1}{2}=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=1\)
\(\Rightarrow x=3\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\).
a , \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=> \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b , \(\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c , \(\left(2x-1\right)^3=-8\Rightarrow2x-1=-2\Rightarrow x=\dfrac{-1}{2}\)
d , \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4^2}\)
<=> \(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
a) 3-x+2x+7=2x
=> 3+x+7=2x
=> 10+x=2x
=> x-2x=-10
=> -x=-10
=> x=10
Vậy x= 10
b) 3(x+1)=2
=> x+1=2/3
=>x=2/3-1
=> x= 2/3 - 3/3
=> x= -1/3
Vậy x = -1/3
Lời giải:
a, \(\left(3-x\right)+\left(2x+7\right)=2x\)
\(\Rightarrow3+x+7=2x\)
\(\Rightarrow x+10=2x\)
\(\Rightarrow x-2x=-10\)
\(\Rightarrow-x=-10\)
\(\Rightarrow x=10\)
b, \(\dfrac{x+1}{2}=\dfrac{1}{3}\)
\(\Rightarrow3.\left(x+1\right)=2.1\)
\(\Rightarrow3\left(x+1\right)=2\)
\(\Rightarrow x+1=\dfrac{2}{3}\)
\(x=\dfrac{-1}{3}\)