Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ
ai đi qua tick cho mình nha
ai tick thì may mắn trọn đời
a )
\(3\left|2x-1\right|+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Rightarrow3\left|2x-1\right|+1=4-3.-8\)
\(\Rightarrow3\left|2x-1\right|+1=4-\left(-24\right)\)
\(\Rightarrow3\left|2x-1\right|+1=28\)
\(\Rightarrow3\left|2x-1\right|=28-1\)
\(\Rightarrow3\left|2x-1\right|=27\)
\(\Rightarrow\left|2x-1\right|=27:3\)
\(\Rightarrow\left|2x-1\right|=9\)
\(\Rightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\2x=-8\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
b )
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\left(L\right)\\x=-2\end{cases}\Rightarrow}x=-2}\)
Vậy \(x=-2\)
~ Ủng hộ nhé
1. ta có
3x+2+4.3x+1+3x−1=66
3x.3+3x.3.4+3x:3=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
1:
\(\Leftrightarrow4\cdot3^x\cdot\dfrac{1}{9}+2\cdot3^x\cdot3=4\cdot3^4+2\cdot3^7\)
\(\Leftrightarrow3^x\cdot\left(\dfrac{4}{9}+6\right)=3^4\cdot\left(4+2\cdot3^3\right)\)
\(\Leftrightarrow3^x=729\)
hay x=6
2: \(\Leftrightarrow3^x\cdot4\cdot\dfrac{1}{3}+3^x\cdot2\cdot9=4\cdot3^6+2\cdot3^9\)
\(\Leftrightarrow3^x\cdot\dfrac{58}{3}=42282\)
=>3x=2187
hay x=7
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a)\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(x^2+4>0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
b) \(3^{x+2}+4.3^{x+1}+3^{x-1}=6^6\)
\(\Rightarrow3^x.9+3^x.12+3^x.\dfrac{1}{3}=46656\)
\(\Rightarrow3^x\left(9+12+\dfrac{1}{3}\right)=46656\Leftrightarrow3^x.\dfrac{64}{3}=46656\Leftrightarrow3^x=2187\Leftrightarrow x=7\)
Giải:
a) \(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+4\right)=0\)
Vì \(x^2+4>0;\forall x\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..
b) \(3^{x+2}+4.3^{x+1}+3^{x-1}=6^6\)
\(\Leftrightarrow3^{x-1+3}+4.3^{x-1+2}+3^{x-1}=6^6\)
\(\Leftrightarrow3^{x-1}\left(3^3+4.3^2+3\right)=6^6\)
\(\Leftrightarrow3^{x-1}.66=6^6\)
\(\Leftrightarrow3^{x-1}=\dfrac{6^6}{66}\)
\(\Leftrightarrow3^x-3=\dfrac{7779}{11}\)
\(\Leftrightarrow3^x=\dfrac{7809}{11}\)
Tìm x rồi kết luận