Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1
mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)
=> a^2+a-2=a^2-a
=>a^2 + a -2 - a^2 +a =0
=> 2a - 2 = 0
=> 2(a-1)=0
=> a-1 = 0
=> a=1
=> a-1 = 1-1 = 0
a+1 = 1+1=2
vậy 3 số tự nhiên liên tiếp đó là 0,1,2
Câu 1 nha
Vì tam giác AHC vuông tại H (AH là đường cao của BC) =>
AC^2 = AH^2 + HC^2
HC^2 = AC^2 - AH^2
= 10^2 - 8^2
= 6^2
=> HC = 6
BH = BC - HC
= 12 - 6 = 6
(Tương tự áp dụng định lý Pi-ta-go ở tam giác ABH) => AB = 10
=> Chu vi tam giác ABC là
12+10+10=32 cm
Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6
Thank you bạn!. Bạn giải thích ra tại sao lại như vậy có được không ạ?
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy SCT là 49
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy SPT là 49.
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy x = 49