Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)
vậy...
2.
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
⇒ \(5x+1=\pm\frac{6}{7}\)
⇒ \(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)
Chúc bạn học tốt!
2(x4+3)-(9)=17
⇒2x4+6+9=17
⇒2x4+15=17
⇒ 2x4=2
⇒ x4=1
⇒ x=\(\pm1\)
b) 5x2.x+1-3.42=-47
⇒5x3+1-48=-47
⇒5x3-47=-47
⇒5x3=0
⇒x3=0
⇒x=0
a) \(2\left(x^4+3\right)-\left(-9\right)=17\)
\(2x^4+6+9=17\)
\(2x^4=2\)
\(x^4=1\)
⇒ \(x=1\)