Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai hay sao á, k rút gọn được.
fix: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
Cần chứng minh: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Lời giải:
Từ \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-z-x}{ab-ac}=\dfrac{y+z-x-y}{bc-ab}=\dfrac{z+x-y-z}{ac-ab}=\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{a\left(c-b\right)}\left(đpcm\right)\)
BÀI 1:
\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)
\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky
Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)
Theo đề bài thì:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\dfrac{\left(a+b+b+c+c+a\right)-a-b-c}{c+a+b}\)
\(=\dfrac{a+b+c}{c+a+b}=1\)
Nên: \(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)
Mà
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)
\(P=\left(\dfrac{b+c-a+c+a-b}{a}\right)\left(\dfrac{c+a-b+a+b-c}{b}\right)\left(\dfrac{a+b-c+b+c-a}{c}\right)\)
\(P=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=\dfrac{8ab}{abc}=8\)
Vậy \(P=8\)
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Khi đó \(P=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)
Khi đó \(P=\dfrac{8abc}{abc}=8\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
x = a/(b + c) = b/(c + a) = c/(a + b) = (a + b + c)/(b + c + c + a + a + b) = 1/2
=> x = 1/2