Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(2\cdot\left(2-x\right)+\frac{1}{2}\cdot\left(2-x\right)^2=0\)
\(\Leftrightarrow\left(2-x\right)\left[2+\frac{1}{2}\left(2-x\right)\right]=0\)
\(\Leftrightarrow\left(2-x\right)\left(3-\frac{x}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3-\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
2( 2 - x ) + 1/2( 2 - x )2
Đa thức có nghiệm <=> 2( 2 - x ) + 1/2( 2 - x )2 = 0
<=> ( 2 - x )[ 2 + 1/2( 2 - x ) ] = 0
<=> ( 2 - x )[ 2 + 1 - 1/2x ]
<=> ( 2 - x )( 3 - 1/2x ) = 0
<=> \(\orbr{\begin{cases}2-x=0\\3-\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Bài làm:
Ta có: \(P=\frac{2x-1}{x-1}=\frac{\left(2x-2\right)+1}{x-1}=2+\frac{1}{x-1}\)
Để P đạt GTLN
=> \(\frac{1}{x-1}\) đạt GTLN => \(x-1\) đạt giá trị dương nhỏ nhất
Mà x nguyên => x - 1 nguyên
=> \(x-1=1\Rightarrow x=2\)
Vậy Max(P) = 3 khi x = 2
\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)( ĐKXĐ : x khác 1 )
Để P đạt GTLN => \(\frac{1}{x-1}\)đạt GTNN
=> x - 1 là số dương nhỏ nhất
=> x - 1 = 1
=> x = 2 ( tmđk )
Vậy PMax = \(2+\frac{1}{2-1}=2+1=3\), đạt được khi x = 2
Mình không chắc nha -.-
Bạn tham khảo nha https://olm.vn/hoi-dap/detail/16281729260.html
Ta có :\(\frac{6^8.2^4-4^5.18^4}{27^3.8^4-3^9.2^{13}}=\frac{\left(2.3\right)^8.2^4-\left(2^2\right)^5.\left(3^2.2\right)^4}{\left(3^3\right)^3.\left(2^3\right)^4-3^9.2^{13}}=\frac{2^{12}.3^8-2^{14}.3^8}{3^9.2^{12}-3^9.2^{13}}=\frac{3^8.2^{12}.\left(2^2-1\right)}{3^9.2^{12}.\left(1-2\right)}\)
\(=\frac{3^9.2^{12}}{-3^9.2^{12}}=-1\)
\(\frac{6^8\cdot2^2-4^5\cdot18^4}{27^3\cdot8^4-3^9\cdot2^{13}}\)
\(=\frac{\left(2.3\right)^8.2^4-\left(2^2\right)^5.\left(3^2.2\right)^4}{\left(3^3\right)^3.\left(2^3\right)^4-3^9.2^{13}}\)
\(=\frac{2^{12}.3^8-2^{14}.3^8}{3^9.2^{12}-3^9.2^{14}}\)
\(=\frac{3^8.2^{12}.\left(2^2-1\right)}{3^9.2^{12}.\left(1-2\right)}\)
\(=\frac{3^9.2^{12}}{-3^9.2^{12}}=-1\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)
\(\Rightarrow\)x2=20
y2=45
z2=125
Áp dụng .......................................
ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5
Vậy: x=10
y=15
z=25
\(|3x-5|=|\frac{1}{2}+3|\)
\(\Rightarrow|3x-5|=|\frac{7}{2}|=\frac{7}{2}\)
\(\orbr{\begin{cases}3x-5=\frac{7}{2}\\3x-5=-\frac{7}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}3x=\frac{17}{2}\\3x=-\frac{3}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{17}{6}\\x=-\frac{1}{2}\end{cases}}}\)
a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )
\(\frac{1}{2}\) - \(\frac{7}{12}\) < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\)
\(\frac{-1}{12}\) < x < \(\frac{1}{8}\)
Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .
a) \(\left(x-\frac{1}{2}\right)^4=\frac{1}{81}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^4=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=\frac{-1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)
Vậy ...
\(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
=> (x - 2)2 = \(\frac{-2}{9}.\left(-2\right)\)
=> (x - 2)2 = 9
=> \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(\frac{x-2}{\frac{-2}{9}}=\frac{-2}{x-2}\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)=\frac{-2}{9}.\left(-2\right)\)
\(\Rightarrow\left(x-2\right)^2=\frac{4}{9}\)
\(\Rightarrow\left(x-2\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}+2\\x=-\frac{2}{3}+2\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{4}{3}\)
Học tốt