K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Ta có:  \(\frac{x-18}{2018}=\frac{x-17}{2017}\)

\(\Rightarrow\left(x-18\right).2017=\left(x-17\right).2018\)( tính chất của 2 tỉ số bằng nhau )

\(2017x-2017.18=2018x-2018.17\)

\(2018.17-2017.18=2018x-2017x\)

\(\left(2017+1\right).17-2017.\left(17+1\right)=x\)

\(2017.17+17-2017.17-2017=x\)

\(x=-2000\)

Vậy \(x=-2000\)

\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x-1}{101}+\frac{x-2}{102}\)

\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)=\left(\frac{x-1}{101}+1\right)+\left(\frac{x-2}{102}+1\right)\) ( cộng cả 2 vế thêm 2 )

\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)

\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\right)=0\)

Ta có: \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\ne0\)

\(\Rightarrow x+100=0\)

​​\(x=-100\)

Vậy \(x=-100\)

7 tháng 7 2018

a, \(\frac{x-18}{2018}=\frac{x-17}{2017}\)

=>\(\frac{x-18}{2018}+1=\frac{x-17}{2017}+1\)

=>\(\frac{x-18+2018}{2018}=\frac{x-17+2017}{2017}\)

=>\(\frac{x+2000}{2018}=\frac{x+2000}{2017}\)

=>\(\frac{x+2000}{2018}-\frac{x+2000}{2017}=0\)

=>\(\left(x+2000\right)\left(\frac{1}{2018}-\frac{1}{2017}\right)=0\)

Mà \(\frac{1}{2018}-\frac{1}{2017}\ne0\)

=>x+2000=0 => x=-2000

b, 

=>\(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1\)

=>\(\frac{x+1+99}{99}+\frac{x+2+98}{98}=\frac{x-1+101}{101}+\frac{x-2+102}{102}\)

=>\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)

=>\(\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)

=>\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\right)=0\)

Mà \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\ne0\)

=>x+100=0 => x=-100

25 tháng 9 2016

x=100

Ta sẽ có: 1-1+1+1-1+1-1+1=0

25 tháng 9 2016

\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)

\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)

\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)

\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)

Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)

\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)

\(\Rightarrow x-100=0\)

\(\Rightarrow x=100\)

Vậy \(x=100\)

25 tháng 9 2016

x thuoc R

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

16 tháng 7 2017

a) \(\left(x+\frac{1}{3}\right)^3=\frac{-8}{27}\)

\(\left(x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\)

\(x+\frac{1}{3}=\frac{-2}{3}\)

\(x=-1\)

b) \(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\frac{25}{9}\)

\(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\left(\frac{5}{3}\right)^2\)

\(\frac{1}{3}x+\frac{4}{3}=\frac{5}{3}\)

\(\frac{1}{3}x=\frac{1}{3}\)

\(x=1\)

c) \(2^x+2^{x+1}=24\)

\(2^x+2^x.2=24\)

\(2^x.\left(1+2\right)=24\)

\(2^x.3=24\)

\(2^x=8\)

\(2^x=2^3\)

\(x=3\)

16 tháng 7 2017

a, (x+1/3)^3 = -8/27

=>(x+1/3)^3 = (-2/3)^3

=>x+1/3     = -2/3

=>x           = -1

b, (1/3x+4/3)^2 = 25/9

=>(1/3x+4/3)^2 = (5/3)^2

=>(1/3x+4/3)   = 5/3

=>1/3x           = 1/3

=>    x           = 1

c, 2^x + 2^x+1 = 24

=>2^x + 2^x . 2 = 24

=>2^x.(1+2)     = 24

=>2^x . 3         = 24

=>2^x              =8

=>2^x             = 2^3

=>  x              = 3

16 tháng 6 2016

\(\text{Theo bài ra, ta suy ra:}\)

\(\text{3x= 2y; 5y= 4z.}\)

\(\text{Suy ra:}\)\(\frac{x}{y}=\frac{2}{3};\frac{y}{z}=\frac{4}{5}\)

\(\text{Suy ra:}\) \(\frac{x}{y}=\frac{8}{12};\frac{y}{z}=\frac{12}{15}\)

\(\text{Suy ra: x= 8 phần; y= 12 phần; z= 15 phần}\)

\(\text{Suy ra: x+ y- z tương ứng với: 8+12-5=5 phần. }\)

\(\text{Suy ra 1 phần tương úng với:}\)\(\text{10:5=2}\)

\(\text{Suy ra: x= 2.8=16}\)

\(\text{y=2.12=24}\)

\(\text{z=2.15=30}\)

\(\text{Vậy: x=16; y=24;z=30.}\)

16 tháng 6 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{10}{0}\)

Vì phân số này không có nghĩa nên bạn xem lại đề nhé

16 tháng 6 2016

ADTCCDTS bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)  (và x+ y -z = 10 )

\(=>\frac{x+y-z}{2+3-5}=10\)

\(=>x=10x2=20\)

\(=>y=10x3=30\)

\(=>z=10x5=50\)

28 tháng 8 2019

a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)

<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))

<=> x=-1

Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)

b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)

<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)

<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=-2021

Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)

c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)

<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=2010

Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)

d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)

<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)

<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0

=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))

<=> x=100

Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)

28 tháng 8 2019

a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

Vậy \(x=-1.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

24 tháng 6 2018

\(a)\) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=-4+4\)

\(\Leftrightarrow\)\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)

\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)

Nên \(x+100=0\)

\(\Rightarrow\)\(x=-100\)

Vậy \(x=-100\)

Chúc bạn học tốt ~ 

24 tháng 6 2018

\(b)\) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=1-\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2009}\)

\(\Leftrightarrow\)\(x+1=2009\)

\(\Leftrightarrow\)\(x=2009-1\)

\(\Leftrightarrow\)\(x=2008\)

Vậy \(x=2008\)

Chúc bạn học tốt ~ 

18 tháng 10 2015

Ta có: 24(1 + 2y) = 18(1 + 4y) <=> 48y + 24 = 72y + 18 <=> y = 0,25

Do đó \(\frac{1+4.0,25}{24}=\frac{1+6.0,25}{6x}=\frac{1}{12}=\frac{5}{12x}\Rightarrow x=5\)