Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- x2.(x3-x2+x-1)
- x.( x3-3x2-1)+3
- x.(x2-xy-y2)
Tìm x:
x3-16x = 0
=> x.(x2-16) = 0
=> x = 0 hay x2-16 = 0
=> x = 0 hay x2 = 0+16
=> x = 0 hay x2 = 16
=> x = 0 hay x = 4 hay x = -4
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2
1. nhóm (x-1)(x+6)(x+2)(x+3)
nhân vào
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6)
từ đó suy ra
(x^2-5x)^2 - 6^2
vì (x^2-5x)^2 lun lớn hon ko
nên dấu “=” xảy ra khi (x^2-5x)^2=0
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5
\(x^3-4x^2-8x+8\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(8x-8\right)\)
\(\Leftrightarrow x^2\left(x-4\right)-4\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-4\right)\)
x4+x=x(x3+1)=x(x+1)(x2-x+1)
x4+64=x4+16x2+64-16x2=(x2+8)2-(4x)2=(x2+8+4x)(x2+8-4x)
4x4+81=4x4+36x2+81-36x2=(2x2+9)2-(6x)2=(2x2+9+6x)(2x2+9-6x)
64x4+y4=64x4+16(xy)2+y4-16(xy)2=(8x2+y2)-(4xy)2=(8x2+y2-4xy)(8x2+y2=4xy)
x4+4y4=x4+4(xy)2+4y4-4(xy)2=(x2+2y2-2xy)(x2+2y2+2xy)
x4+x2+1=(x4+2x2+1)-x2=(x2+1-x)(x2+1+x)
Mình làm có vài đoạn hơi tắt nha.
\(A=-5x^2-4x+7\)
\(\Leftrightarrow-5A=25x^2+20x-35\)
\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)
\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)
Ta có:
\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)
Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)