Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1=x^2+2x+1\)
\(\Leftrightarrow x^2+2x+1-x-1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)
\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x^2+1=0\)
Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)
\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm
Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
\(\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(=x^4+x^3\left(b-1\right)+x^2\left(a-b\right)-x\left(a+2\right)+2\)
Đồng nhất với đa thức \(x^4-3x+2\), ta có:
\(b-1=0,a-b=0,a+2=3\)
\(\Rightarrow a=1,b=1\)
Chúc bạn học tốt.
a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4
<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4
<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4
<=> 45x + 9 = 4
<=> 45x = -5
<=> x = -5/45 = -1/9
b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17
<=> x( x2 - 25 ) - ( x3 + 8 ) = 17
<=> x3 - 25x - x3 - 8 = 17
<=> -25x - 8 = 17
<=> -25x = 25
<=> x = -1
a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2
(2x - 1).x^2 = 2x^3 - 3x^2 + 2
2x^3 - x^2 = 2x^3 - 3x^2 + 2
-x^2 = -3x^2 + 2
2x^2 = 2
x^2 = 1
=> x = 1; -1
b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x
(x + 2)^2 - (x - 2)^2 = 8x
x^2 + 4x + 4 - x^2 + 4x - 4 = 8x
8x = 8x
=> x thuộc N*
c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27
x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27
17x + 10 = 27
17x = 27 - 10
17x = 17
=> x = 1
d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0
6x + 20 = 0
6x = -20
x = -20/6
=> x = -10/3
\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)=4\)
\(\Leftrightarrow2x.2-3x^2+3=4\)
\(\Leftrightarrow-3x^2-4x-1=0\)
\(\Leftrightarrow-3x^2-3x-x-1=0\)
\(\Leftrightarrow-3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\)