Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\frac{x^2}{9}=4\Rightarrow x^2=4\cdot9\Rightarrow x^2=36\Rightarrow x=6\text{ hoặc x = -6}\)
\(\Rightarrow\frac{y^2}{16}=4\Rightarrow y^2=4\cdot16\Rightarrow y^2=64\Rightarrow y=8\text{ hoặc y = -8}\)
Chúc bạn học tốt :>
x2/9=y2/16=x2+y2/9+16=100/25=4
=>x2/9=4=>x2=36=>x=+-6
=>y2/16=4=>y2=64=>y=+-8
Đơn giản hóa 2x 2 + x + -1 = 0 Sắp xếp lại các điều khoản: -1 + x 2 x 2 = 0 Giải quyết -1 + x 2 x 2 = 0 Giải quyết cho biến 'x'. Yếu tố một trinomial. (-1 + -1x) (1 + -2x) = 0
Subproblem 1
Đặt '(-1 + -1x)' bằng 0 và cố gắng giải quyết: Đơn giản hóa -1 + -1x = 0 Giải quyết -1 + -1x = 0 Di chuyển tất cả các cụm từ có chứa x sang trái, tất cả các điều khoản khác ở bên phải. Thêm '1' vào mỗi bên của phương trình. -1 + 1 + -1x = 0 + 1 Kết hợp như các thuật ngữ: -1 + 1 = 0 0 + -1x = 0 + 1 -1x = 0 + 1 Kết hợp như các thuật ngữ: 0 + 1 = 1 -1x = 1 Chia mỗi bên bằng '-1'. X = -1 Đơn giản hóa X = -1
chúc bạn học giỏi
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)
\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)
\(\left(2x-3\right)^2=\left(4-x\right)^2\)
\(4x^2-12x+9=16-8x+x^2\)
\(4x^2-12x+9-16+8x-x^2=0\)
\(3x^2-4x-7=0\)
\(3x^2+3x-7x-7=0\)
\(3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(3x-7\right)=0\)
\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
a)11/12 - (2/5 + x)= 2/3
2/5+x=11/12-2/3
2/5+x=1/4
x=1/4-2/5
x=-3/20
b) 2.x (x- 1/7)= 0
2x^2-2/7=0
2x^2=2/7
x^2=1/7
x=\(\sqrt{\frac{1}{7}}\) ;_\(\sqrt{\frac{1}{7}}\)
c)3/4+1/4:x=2/5
1/4:x=2/5-3/4=-7/20
x=1/4:-7/20=-5/7
d, (x- 1/2)2 =0
x-1/2=0
x=1/2
e, (2x -1)3= -8=(-2)^3
2x-1=-2
2x=-2+1=-1
x=-1/2
a) P(x) - Q(x)
= 5x4y5 + 7x7y6z - (7xy7 - 15xy6z)
= 5x4y5 + 77y6z - 7xy7 + 15xy6z
P(x) + Q(x)
= 5x4y5+ 7x7y6z + (7xy7 - 15xy6z)
= 5x4y5 + 7x7y6z + 7xy7 - 15xy6z
b) Cho mik hỏi 2 đa thức trên là P(x) - Q(x) và P(x) + Q(x) hay chỉ là P(x) và Q(x) thôi ạ ?
Mình làm tất, bạn tự lựa chọn nha!
Thay x = 1 và y = 3 vào hai đa thức trên, ta được :
P(x) - Q(x)
= 5.14.35 + 7.17.36.z
= 5.1.243 + 7.1.729.z
= 1215 + 5103z
P(x) + Q(x)
= 5.14.35 + 7.17.36.z
= 5.1.243 + 7.1.729.z
= 1215 - 5103z
P(x) = 5.14.35 + 7.17.36.z = 5.1.243 = 1215
Q(x) = 7.17.36.z = 7.1.729.z = 5103z
X2-\(\frac{7}{9}\)X=0 <=> X(X-\(\frac{7}{9}\))=0
=> x=0 hoặc x-\(\frac{7}{9}\)=0
x-\(\frac{7}{9}\)=0 <=>X=0+\(\frac{7}{9}\)=\(\frac{7}{9}\)
=> X=0 hoặc \(\frac{7}{9}\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\cdot\left(x-7\right)^{10}=0\)
\(\left(x-7\right)^{x+1}\cdot\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=7\\\left(x-7\right)^{10}=1\end{cases}}\)
Bạn xét nốt TH \(\left(x-7\right)^{10}=1\)nhé
\(\Rightarrow\hept{\begin{cases}x=7\\\hept{\begin{cases}x-7=1\\x-7=-1\end{cases}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=7\\\hept{\begin{cases}x=7\\x=6\end{cases}}\end{cases}}\)
( x - 7 )x + 1 - ( x - 7 )x + 11 = 0
=> ( x - 7 )x + 1 .[ 1 - ( x - 7 )10] = 0
=>( x - 7 )x + 1 = 0 hoặc 1 - ( x - 7 )10 = 0
x - 7 = 0 hoặc ( x - 7 )10 = 0
x - 7 = 0 hoặc / x - 7 / = 1
x - 7 = 0 hoặc x - 7 = 1 hoặc x - 7 = -1
=> x = 7 hoặc x = 8 hoặc x = 6
Hok tốt !