Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\((x+4)^2-(x+1)(x-1)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow 8x=-1\Rightarrow x=-\dfrac{1}{8}\)
b,\((2x-1)^2-(x+3)^2-5(x+7)(x-7)=0\)
\(\Rightarrow 4x^2-4x+1-(x^2+6x+9)-5(x^2-49)=0\)
\(\Rightarrow 4x^2-4x+1-x^2-6x-9-5x^2-245=0\)
\(\Rightarrow -x^2-10x-244=0\)
\(\Rightarrow -(x^2-10x+25)-219=0\)
\(\Rightarrow -(x-5)^2-219=0\)
\(\Rightarrow (x-5)^2+219=0\)
Mà \((x-5)^2+219>0\) suy ra PT vô nghiệm
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x\right)^2-3^2=0\)
\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+17=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)
Vậy.........
c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=-127,5\)
Vậy.............
có j sai xót mong m.n bỏ qua☺
a) \(25x^2-9=0\)
<=> \(\left(5x\right)^2=9\)
<=> \(\left(5x\right)^2=3^2\)
<=> \(5x=3\)
<=> \(x=\frac{3}{5}\)
b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)
<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)
<=> \(x^2+8x+16-x^2+1=16\)
<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)
<=> \(8x+17=16\)
<=> \(8x=-1\)
<=> \(x=\frac{-1}{8}\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)
<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)
<=> \(2x+245=0\)
<=> \(2x=-245\)
<=> \(x=\frac{-245}{2}\)
\(\frac{1}{3}x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x=0\\\left(x^2-16\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
\(a.\frac{1}{3}x^3-\frac{16}{3}=0\)
\(\Rightarrow\frac{1}{3}x^3=0+\frac{16}{3}=\frac{16}{3}\)
\(\Rightarrow x^3=\frac{16}{3}:\frac{1}{3}=\frac{16}{9}\)
\(\Rightarrow x=\sqrt[3]{\frac{16}{9}}=1.21........\)
\(< =>\left(\left(x+2\right)^3-\left(x-2\right)^3\right)-16-108=0\)
\(< =>\left(x+2-x+2\right)\left(\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right)-16-108=0\)
\(< =>4\left(x^2+4x+4+x^2-4+x^2-4x+4\right)-16-108=0\)
\(< =>4\left(3x^2+4\right)-16-108=0\)
\(< =>12x^2+16-16-108=0\)
\(< =>12x^2-108=0\)
\(< =>12\left(x^2-9\right)=0\)
\(< =>x^2-9=0\)
\( < =>\left(x-3\right)\left(x+3\right)=0\)
\(< =>\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}< =>\orbr{\begin{cases}x=3\\x=-3\end{cases}}}\)
(x+2)3-(x-2)3-16=108
x3+3x2.2+3.x.22+23-x3+3x2.2-3.x.22+23=124
(x3-x3)+(6x2+6x2)+(12x-12x)+(8+8)=124
12x2+16=124
12x2=108
x2=9
x=-3 hoặc x=3