K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)

\(\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

mà \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)nên

\(x+2020=0\)

\(x=-2020\)

11 tháng 7 2015

Cộng 1 vào 2 vế ta có

\(\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)

\(\left(\frac{x+2015}{5}+\frac{5}{5}\right)+\left(\frac{x+2016}{4}+\frac{4}{4}\right)=\left(\frac{x+2017}{3}+\frac{3}{3}\right)+\left(\frac{x+2018}{2}+\frac{2}{2}\right)\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

Vì \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)

nên \(x+2020=0\Rightarrow x=-2020\)

 

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy : \(x=-2020\)

Chúc bạn học tốt !!

13 tháng 8 2019

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)

Vậy x = -2020

b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)

Vậy x = -2010

19 tháng 12 2017

Tìm x biết:


\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)

Giải:Ta có:\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)

\(\Rightarrow\frac{x}{2018}+1+\frac{x+1}{2017}+1+\frac{x+2}{2016}+1+\frac{x+3}{2015}+1=0\)

\(\Rightarrow\frac{x+2018}{2018}+\frac{x+2018}{2017}+\frac{x+2018}{2016}+\frac{x+2018}{2015}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}\right)=0\)

\(\Rightarrow x+2018=0\) vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}>0\)

\(\Rightarrow x=-2018\)

Vậy x=-2018 thỏa mãn

19 tháng 12 2017

x2018 +x+12017 +x+22016 +x+32015 =−4

⇒x2018 +1+x+12017 +1+x+22016 +1+x+32015 +1=0

⇒x+20182018 +x+20182017 +x+20182016 +x+20182015 =0

⇒(x+2018)(12018 +12017 +12016 +12015 )=0

⇒x+2018=0 vì 12018 +12017 +12016 +12015 >0

⇒x=−2018

Vậy x=-2018 thỏa mãn

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

13 tháng 7 2016

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{12\left(x+2015\right)}{60}+\frac{15\left(x+2016\right)}{60}=\frac{20\left(x+2017\right)}{60}+\frac{30\left(x+2018\right)}{60}\)

\(\Rightarrow12x+24180+15x+30240=20x+40340+30x+60540\)

\(\Leftrightarrow-23x=22460\Leftrightarrow x=-\frac{22460}{23}\)

13 tháng 7 2016

\(-23x=46460\Leftrightarrow x=-2020\)

13 tháng 7 2016

\(\frac{x+2015}{7}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Rightarrow\frac{x+2015}{7}+\frac{7}{7}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\Rightarrow\frac{x+2020}{7}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)

\(\Rightarrow\frac{x+2020}{7}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{7}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

Mà \(\frac{1}{7}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)

\(\Rightarrow x+2020=0\)

\(\Rightarrow x=-2020\)

3 tháng 12 2018

\(\Rightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)

\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)

\(\Rightarrow\orbr{\begin{cases}x=2019\left(1\right)\\\frac{1}{2018}+\frac{1}{2017}=\frac{1}{2016}+\frac{1}{2015}\left(2\right)\end{cases}}\)  mà \(\left(2\right)\)không thể xảy ra nên x=2019 là nghiệm của phương trình.

21 tháng 8 2020

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow a=b=c\)

21 tháng 8 2020

a. \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

11 tháng 5 2018

Đáp án là : 

Tìm x : 

x = -2019 

11 tháng 5 2018

x= -2019

11 tháng 4 2018

Nguyễn Tiến Đạt

a)\(|3x-5|=|x+2|\)

=> Ta có 2 trường hợp

*) TH1: 3x-5=x+2

=>3x-x=2+5

=>2x=7

=>x=7:2\(\Rightarrow x=\frac{7}{2}\)

*)TH2: -3x+5=x+2

\(\Rightarrow5-3x=x+2\)

\(\Rightarrow5-2=x+3x\)

\(\Rightarrow3=4x\)

\(\Rightarrow x=3:4\Rightarrow x=\frac{3}{4}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{3}{4}\right\}\)