K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

a)    thiếu điều kiện

b)  ta thấy: \(VP\ge0\forall x\)

mà   \(VT\ge0\forall x\)

        | x2+| 6x-2|=x2+4

\(\Rightarrow x^2+\left|6x-2\right|=x^2+4\)

\(\Rightarrow\)\(\left|6x-2\right|=4\)

Bạn tự làm tiếp nhé

19 tháng 6 2018

Mọi người giúp mk với ạ

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

27 tháng 7 2016

Bài 1: 

a, Thay x = \(\frac{-2}{3}\)vào biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 ta có:

=>                                              A = \(6\left(-\frac{2}{3}\right)^3-3\left(-\frac{2}{3}\right)^2+\left|-\frac{2}{3}\right|+4\)

=>                                              A = \(6\left(-\frac{8}{27}\right)-3\cdot\frac{4}{9}+\frac{2}{3}+4\)

=>                                             A = \(-\frac{16}{9}-\frac{4}{3}+\frac{2}{3}+4\)                                     (Đến đây bạn tự giải tiếp nha)

                                                   Vậy giá trị của biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 với x =  \(\frac{-2}{3}\)là  "KQ bạn tính nha"

27 tháng 7 2016

Nhưng bạn có thể giúp mình bài 2 được ko,còn bài 3 thì mình giải được rồi

26 tháng 11 2016

1)\(2x^2+9y^2-6xy-6x-12y+2004\)

\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)

\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)

\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)

Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)

Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)

2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(t=x^2+x\) ta có:

\(t\left(t-4\right)=t^2-4t+4-4\)

\(=\left(t-2\right)^2-4\ge-4\)

Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)

Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)

3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)

\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)

Đặt \(t=x^2+5x+5\) ta có:

\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)

Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)

4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

Đặt \(t=x^2-4x+3\) ta có:

\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)

Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)

Vậy Min=-1 khi x=2

 

 

 

26 tháng 11 2016

Thank you !

12 tháng 9 2018

a) \(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=3\Leftrightarrow x-2=3\Leftrightarrow x=5\)

b) \(\sqrt{x^2-12}=2\) \(\Leftrightarrow x^2-12=4\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

c) \(\sqrt{x+3}=x+3\Leftrightarrow x+3-\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

mấy câu còn lại bn làm tương tự

12 tháng 9 2018

Mysterious Person Akai Haruma

24 tháng 9 2019

a) Đặt \(x-1=a\)

\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)

Vậy pt vô nghiệm

24 tháng 9 2019

a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2}=2\)

=> không có x thỏa mãn đề bài.

b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)

\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)

\(7-4x-3x^2=25x-25\)

\(7-4x-3x^2-25x+25=0\)

\(32-29x-3x^2=0\)

\(3x^2+29x-30=0\)

\(3x^2+32x-3x-32=0\)

\(x\left(3x+32\right)-\left(3x+32\right)=0\)

\(\left(3x+32\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)