K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

16 tháng 3 2020

1) Ta có: \(4x^2-1=\left(2x+1\right).\left(3x-5\right)\)

\(\Leftrightarrow\left(2x+1\right).\left(2x-1\right)-\left(2x+1\right).\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right).\left[\left(2x-1\right)-\left(3x-5\right)\right]=0\)

\(\Leftrightarrow\left(2x+1\right).\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right).\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\-x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=4\)

2) Ta có: \(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(x+1\right)^2-\left[2.\left(x-1\right)\right]^2=0\)

\(\Leftrightarrow\left[\left(x+1\right)+2.\left(x-1\right)\right].\left[\left(x+1\right)-2.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1+2x-2\right).\left(x+1-2x+2\right)=0\)

\(\Leftrightarrow\left(3x-1\right).\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(TM\right)\\x=3\left(TM\right)\end{matrix}\right.\)

Vậy \(x=\frac{1}{3}\) hoặc \(x=3\)

3) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x.\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x.\left(2x^2-x+6x-3\right)=0\)

\(\Leftrightarrow x.\left[x.\left(2x-1\right)+3.\left(2x-1\right)\right]=0\)

\(\Leftrightarrow x.\left(x+3\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(TM\right)\\x=-\frac{1}{2}\left(TM\right)\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-3\) hoặc \(x=-\frac{1}{2}\)

4) Ta có: \(2x=3x-2\)

\(\Leftrightarrow2x-3x=-2\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(TM\right)\)

Vậy \(x=2\)

5) Ta có: \(x+15=3x-1\)

\(\Leftrightarrow x-3x=-1-15\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\left(TM\right)\)

Vậy \(x=8\)

6) Ta có: \(2-x=0,5x-4\)

\(\Leftrightarrow-x-0,5x=-4-2\)

\(\Leftrightarrow-1,5x=-6\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy \(x=4\)

16 tháng 3 2020

1) 4x2-1=(2x+1)(3x-5)

<=> (2x-1)(2x+1)-(2x+1)(3x-5)=0

<=> (2x+1)(2x-1-3x+5)=0

<=> (2x+1)(4-x)=0

<=>\([^{2x+1=0}_{4-x=0}< =>[^{2x=-1}_{x=4}< =>[^{x=\frac{-1}{2}}_{x=4}\)

2) (x+1)2= 4(x2-2x+1)

<=> x2+2x+1-4(x2-2x+1)=0

<=> x2+2x+1-4x2+8x-4=0

<=> -3x2+10x-3=0

<=> -3x2+x+9x-3=0

<=> -x(3x-1)+3(3x-1)=0

<=> (3x-1)(3-x)=0

<=> \([^{3x-1=0}_{3-x=0}< =>[^{3x=1}_{x=3}< =>[^{x=\frac{1}{3}}_{x=3}\)

3) 2x3+5x2-3x=0

<=> 2x(x2+\(\frac{5}{2}x-\frac{3}{2})=0\)

<=> 2x\(\left[x^2+2.\frac{5}{4}x+\frac{25}{16}-\left(\frac{25}{16}+\frac{3}{2}\right)\right]=0\)

<=> 2x\(\left[\left(x+\frac{5}{4}\right)^2-\frac{49}{16}\right]=0\)

<=> 2x\(\left(x+\frac{5}{4}-\frac{7}{4}\right)\left(x+\frac{5}{4}+\frac{7}{4}\right)=0\)

<=> x\(\left(x-\frac{1}{2}\right)\left(x+3\right)=0\)

<=>\(\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-3\end{matrix}\right.\)

4) 2x=3x-2

<=> 2x-3x=-2

<=> -x=-2

<=> x=2

5) x+15=3x-1

<=> x-3x=1-15

<=> -2x=-14

<=> x=-14:-2

<=> x=7

6) 2-x=0,5x-4

<=> -x-0,5x=-4-2

<=> -1,5x=-6

<=> x= -6: -1,5

<=> x=4

học tốt nghen

3 tháng 5 2020
https://i.imgur.com/88Zm20M.jpg
3 tháng 5 2020
https://i.imgur.com/zsGzAKT.jpg
5 tháng 7 2016

5x^3+4x=x(5x^2+4)=0=> x=0 vi 5x^2+4 khac 0

2) tuong tu x=0

3) tt x=0

cu phan h la ra

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt